Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Cancer Research

使用荧光成像快速体外细胞毒性评估表达嵌合抗原受体的 Jurkat

Published: October 27, 2023 doi: 10.3791/65560
* These authors contributed equally

Summary

一种评估靶向单个肿瘤抗原的表达嵌合抗原受体 (CAR) 的 Jurkat 细胞定量肿瘤细胞杀伤的方案。该方案可用作筛选平台,用于在外周血来源的T细胞中确认之前快速优化CAR铰链结构。

Abstract

嵌合抗原受体 (CAR) T 细胞处于肿瘤学的最前沿。CAR 由靶向结构域(通常是单链可变片段 scFv)构建,伴随链内连接子,然后是铰链、跨膜和共刺激结构域。链内连接子和铰链结构域的修饰可以对CAR介导的杀伤产生显着影响。考虑到 CAR 结构的每个部分都有许多不同的选项,因此有大量的排列。制造CAR-T细胞是一个耗时且昂贵的过程,制造和测试许多构建体是一项大量的时间和材料投资。该协议描述了一个平台,用于快速评估 Jurkat 细胞 (CAR-J) 中铰链优化的 CAR 构建体。Jurkat 细胞是一种永生化的 T 细胞系,具有高慢病毒摄取量,可实现高效的 CAR 转导。在这里,我们提出了一个使用荧光成像仪快速评估 CAR-J 的平台,然后确认 PBMC 衍生的 T 细胞的细胞溶解。

Introduction

据美国国家癌症研究所1 报道,CAR-T 细胞疗法在血液系统恶性肿瘤中显示出巨大的前景,自 2017 年以来,FDA 批准了 6 种 CAR-T 产品。有许多CAR-T细胞在临床试验中用于靶向实体瘤。设计新的CAR靶点和优化CAR结构对于CAR-T细胞的功效至关重要。为每种应用选择理想的 CAR 构建体对于准确靶向肿瘤相关抗原 (TAA) 至关重要,同时避免正常组织中 TAA 表达水平低2

CAR 构建体主要由五个区室组成:(1) 靶向肿瘤抗原的细胞外单链可变片段 (scFv) 结构域;(2)铰链域;(3)跨膜结构域;(4)细胞内细胞质T细胞共刺激结构域;(5)信令域。修改这些结构域中的每一个都会影响 CAR-T 细胞与其靶细胞结合的精度 3。因此,评估这些CAR构建体细胞毒性和交叉反应性对于选择正确的构建体进行体内实验至关重要。目前评估 T 细胞溶解的方法包括 51Cr 释放试验、乳酸脱氢酶释放试验、生物发光成像试验、基于实时阻抗的细胞分析和基于细胞的流式细胞术试验 4,5。这里描述的基于荧光成像的平台可识别活细胞与死细胞的数量,这是对 T 细胞溶解的直接定量,而不是评估 T 细胞溶解的间接方法。

这是一种简单、经济高效、快速且高通量的技术,只需最少的干预,即可评估表达表皮生长因子受体 (EGFR) CAR 的 Jurkat 细胞对 MDA-MB-231 三阴性乳腺癌 (TNBC) 细胞和 EGFR CRISPR 敲除 MDA-MB-231 细胞的细胞毒性。Jurkat 细胞是永生化的人 T 淋巴细胞6,已被广泛用于研究 T 细胞活化和信号转导机制7。此外,Jurkat 细胞已在多项研究891011 中用于体外 CAR 测试。Jurkat 细胞很容易被慢病毒转导并具有持续的增殖,该系统被用于优化各种 EGFR CAR 构建体的铰链结构域。

该测定可用于筛选靶向各种肿瘤抗原的多种CAR构建体,并用于对抗多种贴壁肿瘤细胞系和各种效应子与肿瘤(E:T)比率。此外,可以评估多个时间点,并且可以修改重复次数,以确定各种CAR构建体中的最佳杀伤。需要使用外周血单核细胞 (PBMC) 衍生的 CD3 T 细胞来确认最佳构建体。开发这种方法的总体目标是以高通量方式快速优化CAR铰链几何形状,克服转导效率低等障碍,然后在PBMC衍生的T细胞中得到确认。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

注意:所有细胞培养工作均在生物安全柜中完成,并配有实验室外套、手套并遵循标准无菌技术。

1. 生成表达 CAR 的 Jurkats (CAR-J)

  1. 购买 Jurkat 细胞,从 ATCC 克隆 E6-1。在 T-75 烧瓶中解冻 1 x 106 个细胞,并在 T-75 烧瓶中培养。使用补充有10%FBS的Roswell Park Memorial Institute(RPMI)培养基在37°C和5%CO2的培养箱中,以0.6×106个细胞/mL的悬浮液维持它们。
  2. 培养板 1 x 10 5 个 Jurkat 细胞,每孔组织培养物处理 24 孔板,在含有 4 μg/mL 聚凝胺的 500 μL RPMI 生长培养基中,可提高慢病毒效率。使用基于激光的荧光检测台式细胞分析仪对细胞进行计数。孔的数量取决于要评估的结构数量。此示例将使用 4 个构造和一个未转导的控件。CAR结构设计如表1所示。
  3. 每个CAR构建体中加入10μL慢病毒/孔。CAR构建体设计和慢病毒生产如前所述12
  4. 第二天,向每个孔中加入1mL生长RPMI培养基,并继续在37°C的培养箱中用5%CO2培养。
  5. 2 天后(Jurkat 转导后总共 72 小时)收集细胞并计数。
  6. 取 1 x 104 个细胞进行流动,以确认 Jurkat 细胞上的 CAR 表达。简而言之,用FACS染色溶液(FSS)洗涤细胞2次,然后用靶向用于检测CAR阳性的抗体标记CAR-J,用于在4°C的黑暗中检测CAR阳性30分钟。 用FSS再次洗涤2x,并如前所述通过流式细胞仪运行细胞12。按照制造商的建议使用抗体浓度。
  7. Jurkat 细胞易于转导,几乎总是显示 >90% 的 CAR 表达。在共培养细胞毒性测定之前很久就生产 CAR-J 并冷冻以备后用。

2.铺板CFSE标记的肿瘤细胞

注意:MDA-MB-231(来自ATCC,HTB-26)细胞是合作者的礼物,EGFR KO MDA-MB-231如前所述12

  1. 在 T-75 烧瓶中解冻 1 x 106 个细胞,并在 T-75 烧瓶中培养。将MDA-MB-231肿瘤细胞和CRISPR EGFR KO MDA-MB-231肿瘤细胞维持在14mL补充有10%胎牛血清(FBS)的Dulbecco改良鹰培养基(DMEM)中,在37°C的培养箱中用5%CO2 进行,并在约70%汇合时分裂。
  2. 在常规明场显微镜下观察贴壁肿瘤细胞,以确保近70%的汇合。
  3. 使用血清移液管从烧瓶中取出生长培养基。向T75烧瓶中加入3mL胰蛋白酶,并置于37°C的5%CO2 培养箱中3-5分钟,使细胞从烧瓶中分离。
  4. 使用等量(3mL)生长培养基中和胰蛋白酶。将细胞悬液收集在离心管中,并以400× g 旋转细胞4分钟以沉淀细胞。
  5. 使用移液管弃去上清液,并将细胞重悬于2mL磷酸盐缓冲盐水(PBS)中。使用细胞计数器测定细胞浓度。
  6. 将 8 x 105 个细胞转移到另一个 15 mL 试管中,并加入 PBS 使其体积为 1 mL。
  7. 向每个试管中加入 2 μL 羧基荧光素琥珀酰亚胺酯(CFSE;5 μM 储备浓度),并使用 1 mL 移液管充分混合。
  8. 将细胞与CFSE在37°C的培养箱中用5%CO2孵育20分钟。20分钟后从培养箱中取出试管,并向试管中加入5mL生长培养基。
  9. 将试管以400× g 离心4分钟,以沉淀CFSE标记的细胞。使用移液管弃去上清液,并加入 1 mL 新鲜培养基以重悬细胞。
  10. 使用细胞计数器重新评估细胞浓度。将 4 x 105 个细胞转移到 25 mL 试剂储液槽中,并加入培养基,总体积为 8 mL。
    1. 为确保在100μL培养基中接种5000个肿瘤细胞/孔的足够体积,体积需要能够使用多通道移液器移液,并补偿步骤1.7中少数细胞的损失,准备10%-20%的额外细胞和培养基体积。
  11. 使用 5 mL 血清移液管彻底混合细胞悬液。使用100 μL多通道移液管,将100 μL细胞悬液移液到每排透明平底黑色96孔板的左半部分。样品电镀策略见 表2
  12. 同样在板的右半部分移液EGFR KO细胞。将整个板铺好后,在组织培养罩平台上来回和左右拖动板,以确保肿瘤细胞在孔中的均匀分布。
  13. 将板在37°C的培养箱中用5%CO2 孵育4小时,以便肿瘤细胞附着。

3. 共培养表达 CAR 的 Jurkats 与 CFSE 标记的肿瘤细胞

  1. 使用未转导和表达 CAR 的 Jurkat 细胞的计数,将每个 CAR-J 的 4 x 105 个细胞转移到 25 mL 储液槽中。加入 DMEM 生长培养基,总体积为 2 mL。
  2. 对于 4:1 的 E:T,每孔在 100 μL 培养基中加入 2 x 104 个 CAR-J,使用多通道移液管沿着每个孔的侧面轻轻移动,以免干扰附着的肿瘤细胞。
  3. 使用多通道移液器将另外 100 μL 生长培养基添加到含有肿瘤细胞和 Jurkat 细胞的孔的一侧。仅肿瘤组获得 200 μL 培养基,使其在所有孔中总共获得 300 μL 培养基。
  4. 沿着平台来回和左右运动拖动板,以确保 Jurkat 细胞在肿瘤细胞上的均匀分布。
  5. 在37°C的培养箱中用5%CO2 共培养48小时。

4. 成像板的制备

  1. 根据孔数在低背景荧光培养基中以 1 μg/mL 制备碘化丙啶 (PI) 溶液,每个孔获得 100 μL 培养基。
  2. 对于 84 个孔,制备 9 mL 含有 PI 的培养基。使用移液管彻底混合培养基。
  3. 用去离子水稀释 Triton-X 制备 10 mL 20% Triton-X 溶液。共培养48小时后,通过单次倒置板并在纸巾上敲击来弃去含有CAR-J的上清液。
  4. 现在,使用多通道移液管将100μL上述制备的含有PI的培养基(步骤4.2)轻轻加入每个孔中,以免干扰粘附的肿瘤细胞。
  5. 将 20 μL 20% Triton-X 溶液加入每种肿瘤类型的第一个孔中,作为完全死亡对照。
  6. 将板留在培养箱中20分钟。使用荧光成像流式细胞仪对板进行成像。数据存储在计算机上,以后可以进行分析。

5. 分析荧光图像

  1. 使用肿瘤细胞中的一个孔来设置绿色荧光通道。
  2. 将孔掩模降低到 98%,以去除孔边缘的细胞,因为边缘的信号不完美。
  3. 在绿色荧光 CFSE 通道上识别 CFSE 标记的肿瘤细胞。修改荧光强度阈值以拾取孔上的所有细胞。
  4. 将最小细胞直径设置为25μm,以去除在CFSE通道上检测到的任何碎片。这取决于所分析的细胞类型。
  5. 启用 单独的触摸对象 ,以在单个单元格相互接触时对其进行识别。
  6. 在图像显示屏上选择 CFSE ,然后查看图形叠加,以确定系统正在选取的内容。
  7. 一旦正确拾取CFSE标记的细胞,设置门来定义活细胞群和死细胞群。
  8. 选择 CFSE 标记的单元格,生成 y 轴上的计数直方图与 x 轴上的平均 PI 强度。
  9. 根据我们添加Triton-X的孔(步骤4.5),绘制一个分离器来区分低PI染色细胞和高PI染色细胞。该孔应将大部分细胞置于高 PI 染色区域。
    注意:PI 显示活细胞上的基础信号。因此,添加Triton-X会杀死所有细胞,并且它们在红色荧光通道中染色明亮。这有助于绘制门以将死细胞与活细胞分离。
  10. 调整 x 轴值以便能够更好地查看单元格。现在将低 PI 染色细胞标记为活细胞。
  11. 选择“活动单元格”,设置另一个直方图,其面积位于 x 轴上,计数在 y 轴上。
  12. 使用肿瘤绘制另一个分裂器,仅捕获细胞而不是碎片。Jurkat 处理过的井将开始积聚碎屑,这些碎屑将被 CFSE 染色,需要从计数中清除。其余的非碎片被标记为“大细胞”。
  13. 对整个板运行分析,并导出包含数字的电子表格。
  14. 绘制大计数图以确定暴露于 CAR-J 后孔中剩余的活 CFSE 标记肿瘤细胞的数量。使用单因素方差分析确定统计量。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

在 72 小时时评估了 CAR-J1 的 E:T 比值范围在 1:8 和 8:1 之间,靶向 TNBC MDA-MB-231 细胞上的 EGFR。用含有聚凝胺的CAR慢病毒转导Jurkat细胞以产生CAR-J细胞,如步骤2所述。CAR-J1的细胞毒性随着E:T比值的增加而显著增加,而在1:8的比例下杀伤率没有差异(图1)。在 72 小时内以 4:1 E:T 观察到超过 50% 的杀伤率。该 E:T 用于后续实验,持续时间缩短至 48 小时,用于对多种 CAR 构建体进行快速细胞毒性评估。设计了铰链结构域修饰的EGFR靶向CAR构建体(表1)。使用的 4 种不同的铰链是 IgG 长铰链、IgG 中铰链、IgG 短铰链和 CD8a,如13 所示。这 3 种构建体在 Jurkat 细胞上表达,并通过流式细胞术评估 Flag 标记细胞的百分比(图 2A-D)确定 CAR 阳性,如图12 所示。使用未转导的Jurkat细胞作为对照组来确定CAR表达,门控策略如图2E所示。对表达 EGFR 的 MDA-MB-231 细胞和 CRISPR EGFR KO MDA-MB-231 细胞评估了在 Jurkat 细胞上表达的这 4 种 CAR 构建体的细胞毒性。所有构建体都观察到抗原特异性杀伤(图3A),而对EGFR KO细胞(图3B)没有观察到显著的杀伤,这表明仅通过scFv特异性介导杀伤。未转导的 Jurkat 细胞没有杀死。还显示了肿瘤杀伤的代表性图像,其中CFSE标记的肿瘤细胞与PI染色的死核重叠使它们呈现黄色(图4)。数据代表 3 个独立实验,每组 6 个技术重复。

通过在 PBMC 衍生的 CD3 T 细胞上表达这些 CAR 构建体,进一步证实了这一点。CD3 T细胞上CAR的表达较低,然后通过无菌流分选富集(图5)。然而,含有EGFR CAR的CD8铰链没有表达。因此,评估了其他 3 种含有 IgG 长、IgG 培养基和 IgG 短的 CAR 构建体对 MDA-MB-231 细胞的细胞毒性潜力。与其他 2 种构建体相比,IgG 短链具有最小的细胞毒性效力,存在类似的杀伤趋势(图 6)。为了鉴定 IgG 长链细胞和 IgG 中型 CAR-T 细胞中的最佳构建体,如前所述,通过细胞因子的细胞内染色来评估它们在暴露于 TNBC 肿瘤细胞的情况下的激活情况12。MDA-MB-436 的 EGFR 水平较低,而 MDA-MB-468 的 EGFR 蛋白表达最高,基于蛋白质印迹和 13 个 TNBC 细胞系12。IgG长CAR-T细胞的基础活化水平(TNFa,4-1BB)最低,细胞毒性颗粒(穿孔素和颗粒酶B)14的释放量最低,无需暴露于肿瘤细胞图7)。暴露于高表达EGFR的MDA-MB-468细胞后,基于TNFa和4-1BB,IgG长CAR-T细胞的活化率最高。

Figure 1
图 1:沿 E:T 范围的 EGFR CAR-J1 细胞毒性评估。 将 CFSE 标记的 MDA-MB-231 肿瘤细胞接种未转导的 Jurkat 细胞或靶向 CAR-J1 的 EGFR,E:T 比例为 1:8、1:4、1:2、1:1、2:1、2:1、4:1 和 8:1,显示出随着效应细胞的增加,细胞毒性增加。数据表示为平均值± SD,并使用学生 t 检验评估统计显着性。1:8 E:T不显著,1:4 E:T有***p<0.001,其余****p<0.0001。 请点击这里查看此图的较大版本.

Figure 2
图 2:用于 体外 细胞毒性评估的 EGFR CAR Jurkat 生产。 A-D)4 种不同构建体 CAR IgG 长链、CAR IgG 培养基、CAR IgG 短链、CAR CD8a 的 CAR 表达接近 90%-100%。(E) CAR阳性测定的门控策略:SSC-A与FSC-A图中排除的碎片;在FSC-H与FSC-A图中选择的单细胞;和通过活色染料DAPI阴性门控选择的活细胞。 请点击这里查看此图的较大版本.

Figure 3
图 3:CAR-J 和 CFSE 标记的肿瘤细胞共培养中的细胞毒性评估。A) 将 CFSE 标记的 MDA MB 231 细胞以 4:1 E:T 比例接种 CAR-J 48 小时,显示出不同的肿瘤细胞杀伤功效。(B) CFSE 标记的 CRISPR EGFR KO MDA MB 231 细胞未被任何 CAR-J 细胞杀死。数据表示为平均值±标准差,并使用单因素方差分析评估统计显着性。**p<0.01;电话<0.0001;NS:不重要。 请点击这里查看此图的较大版本.

Figure 4
图 4:共培养 48 小时后图像的视觉表示。A) 仅具有 CFSE(绿色)标记的肿瘤细胞的肿瘤组。(B) 添加未转导的 Jurkat 细胞,红色细胞是死亡的 Jurkat 细胞,以及 (C) 绿色和红色的叠加表示死亡肿瘤细胞(黄色),如箭头所示。量化非黄色的绿色单元格的数量。 请点击这里查看此图的较大版本.

Figure 5
图 5:EGFR CD3 CAR-T 细胞富集。A-B) 通过富集前确定 Flag 阳性和 IgG 阳性细胞的百分比和 (C) 通过无菌流分选富集后来评估 CAR 表达。 请点击这里查看此图的较大版本.

Figure 6
图 6:CD3 CAR-T 和 CFSE 标记的肿瘤细胞共培养中的细胞毒性评估。 将 CFSE 标记的 MDA MB 231 细胞以 4:1 E:T 比例接种 CAR-J 48 小时,显示出不同的肿瘤细胞杀伤功效。数据表示为平均值±标准差,并使用单因素方差分析评估统计显着性。**p<0.01;电话<0.0001;NS:不重要。 请点击这里查看此图的较大版本.

Figure 7
图7:EGFR CD3 CAR-T细胞活化。 将CAR-T细胞暴露于肿瘤细胞中,评估A)TNFa,(B)4-1BB,(C)穿孔素和(D)颗粒酶B的细胞内细胞因子水平。数据表示为平均值±标准差,使用单因素方差分析评估统计显着性 *p<0.05;**p<0.01;**p<0.001;电话<0.0001;NS:不重要。 请点击这里查看此图的较大版本.

不。PA EGFR806 scFv 的 VH-VL 接头 铰链/垫片 TM公司 细胞质
CAR IgG 长 惠特洛 (18 aa) IgG4 EQ CH2 CH3 (229 aa) CD4型 4-1BB / CD3z
CAR IgG 培养基 IgG4 CH3 (129 aa) CD28型 4-1BB / CD3z
CAR IgG 短 IgG 短 (12 aa) CD4型 4-1BB / CD3z
汽车CD8a CD8 (45 aa) CD8a型 4-1BB / CD3z

表1:CAR结构设计。 缩写:aa = 氨基酸;TM = 跨膜。

1 2 3 4 5 6 7 8 9 10 11 12
一个 海卫一-X 仅限 MDA MB 231 海卫一-X 仅限 MDA MB 231 EGFR KO
B MB231 + 模拟 4:1 MB231 EGFR KO + 模拟 4:1
C MB231 + EGFR IgG 长 4:1 MB231 EGFR KO + EGFR IgG 长 4:1
D MB231 + EGFR IgG 培养基 4:1 MB231 EGFR KO + EGFR IgG 培养基 4:1
E MB231 + EGFR IgG 短 4:1 MB231 EGFR KO + EGFR IgG 短 4:1
F MB231 + EGFR CD8a 4:1 MB231 EGFR KO + EGFR CD8a 4:1
G
H

表2:样品电镀策略。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

在这里,我们提出了一种快速方法来有效地评估 Jurkat 细胞中 CAR 表达诱导的靶标特异性细胞溶解活性。所有 CAR 构建体具有相同的 scFv,但不同的铰链和跨膜结构域,这些结构域已被证明会影响 CAR-T 细胞的效力13。通过用抗原敲除 (KO) 细胞培养这些 CAR-J 来进一步评估这些 CAR-J 的非特异性杀伤。这表明杀伤是肿瘤抗原特异性的,而不是由于 CAR-J 的基础激活。可以很容易地确定一系列 E:T 比率的细胞毒性潜力,确定在特定时间点消除肿瘤细胞所需的最少效应细胞数量。来自相同或不同癌症类型和正常细胞的多个细胞系也可用于评估这些构建体的特异性。然后,通过在PBMC衍生的CD3 T细胞上表达CAR并进行类似的杀伤测定,并评估暴露于抗原阳性和阴性肿瘤细胞时的耗竭和激活,可以进一步表征CAR-J平台确定的最有效的候选药物。

必须注意的是,Jurkat 细胞是 CD4+ 细胞,具有改变的 T 细胞受体 (TCR) 信号通路15。因此,理想情况下,CAR 构建体的细胞内信号转导结构域优化应使用 CD3 T 细胞16 进行,而对 Jurkat 细胞可能效果不佳。有趣的是,CD4 T 细胞表现出细胞毒性,正如先前的出版物所证明的那样,其中靶向具有 IgG 长铰链的 CD4 CAR-T 细胞的 EGFR 能够在颅内肿瘤模型 12 中完全根除 TNBC 肿瘤。此外,在 GBM 肿瘤模型中,与 CD4 和 CD8 T 细胞的混合物或单独的 CD8 T 细胞相比,CD4 CAR T 细胞显示出长期效力和更好的杀伤力,使其成为有效 CAR-T 治疗的临床重要 T 细胞亚群17

Jurkat 细胞在激活时产生 IL2 并上调 CD69,尽管它们不分泌原代 T 细胞激活的所有细胞因子 8,18。然而,评估 IL2 和 CD69 水平可告知 Jurkat 细胞被激活,而不是通过这种方法在绝对肿瘤细胞数量中量化的靶细胞的直接细胞溶解。然而,细胞毒性和活化的评估对于充分了解新型CAR分子的作用非常重要。

该实验中共培养的持续时间可以根据所使用的构建体进行修改。发现肿瘤细胞上的 CFSE 标记在接种后 4 天之前是可检测到的。因此,为了获得高信噪比,在72小时内进行了实验。由于 CFSE 强度随着肿瘤细胞的分裂而降低,因此使用的 CFSE 量和持续时间可能需要根据使用的肿瘤细胞而改变。由于这是一项一次分析多个构建体的高通量实验,因此还需要优化 96 孔板中靶细胞的接种密度。必须维持靶细胞,以便在测定结束时它们不会过度汇合或具有竞争性生长限制,而无需更换培养基以尽量减少任何干预。可以使用更大的孔板来容纳更多的细胞并延长实验的寿命。然而,需要拼接图像才能获得油井的全貌,并且每口油井都必须单独处理,这可能无法使其快速和高通量。

另一种长期荧光标记肿瘤细胞的方法是用绿色荧光蛋白 (GFP) 或红色荧光蛋白 (RFP) 进行慢病毒转导。必须进行适当的克隆选择,以选择高度富集(近 100%)最亮的菌落,以获得最佳信噪比。需要根据成像仪器中的荧光检测器适当选择活性染料。

背景荧光取决于所使用的介质,因此必须进行检查以避免在采集图像时丢失信号。常规培养基含有在激发时会发出明显荧光的组分。建议使用低背景媒体19.可以使用 PBS,但它可能会在图像采集过程中影响细胞,因为采集图像大约需要 20 分钟,具体取决于为捕获图像设置的设置。

该测定的局限性之一是在添加活性染料后,无法在同一 96 孔板的多个时间点拍摄图像。本出版物未评估长期添加 PI 的效果。然而,理想的做法是能够使用相同的板在一段时间内检测活细胞和死细胞/垂死靶细胞。如果细胞过度融合,则可能难以分离单个细胞。如图20所示,细胞单层的面积和荧光强度可用于比较活细胞/死细胞的百分比。

用于检测CAR-T细胞溶解的替代方法不直接测量死细胞和活细胞的绝对数量,而是通过间接方法评估效力,这些方法在别处有详细描述4,5。因此,该方法给出了效应细胞的绝对说明,并且也可以用于 3 种细胞类型的共培养,具体取决于成像仪器的容量。所需的细胞很少(每孔 5000 个),这些细胞可能会随着选择时间点的自由而变化,这是使用该测定的巨大优势。悬浮液和三维球状培养物中的靶细胞也可用于效应细胞和细胞溶解的培养物,如其他21所述。此外,该平台可用于筛选大型小分子和化合物库,以描绘最有效的分子,并且可以在多个时间点进行多次给药。

除了系统的速度和灵活性外,最终的好处是成本。荧光成像机、印版和试剂都很常见且价格实惠,尤其是与更复杂的设备相比,甚至可能在其一次性印版中使用贵金属。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

MDA-MB-231 是 Shane Stecklein 博士的一份善意礼物。作者感谢堪萨斯大学癌症中心为进行这项研究提供资金。

Materials

Name Company Catalog Number Comments
15 mL Conical Tube (Sterile) Midwest Scientific #C15B Any similar will work
50 mL Conical Tube (Sterile) Thermo Scientific 339652 Any similar will work
Black/Clear 96 well plate Falcon 353219 Celligo has a list of compatible plates
Celigo 4 Channel Imaging Cytomenter Nexcelcom Bioscience 200-BFFL-5C Any similar will work
Celigo Software Nexcelcom Bioscience Version 5.3.0.0 Any similar will work
Cell Culture Incubator Thermo Scientific HeraCell 160i Any similar will work
Cell Culture Treated Flasks (T75, various sizes, Sterile) TPP 90076 Any similar will work
CFSE Tonbo 13-0850-U500 Any similar will work
Cytek Muse Cell Analyzer Cytek 0500-3115 Any similar will work
DMEM Gibco 11995-040 Any similar will work
FBS Gemini bio-products 900-108 Any similar will work
Flow Cytometer Cytek, BD, etc Aurora, LSR II, etc Any similar will work
FlowJo Sortware Becton Dickinson & Company  Version 10.7.1 Any similar will work
Fluorobrite DMEM Gibco A18967-01 Any similar will work
GraphPad Software GraphPad Version 9.3.1 (471) Any similar will work
Multichanel Pipette Thermo Scientific Finnpipette F2 Any similar will work
PBS Gibco 10010-031 Any similar will work
PenStrep Gibco 15070-063 Any similar will work
Pipette tips (Sterile, filtered, 1 mL, Various sizes) Pr1ma PR-1250RK-FL, etc Any similar will work
Pipettors  Thermo Scientific Finnpipette F2 Any similar will work
Propidium Iodide Invitrogen P1304MP Any similar will work
RPMI Corning 10-041-cv Any similar will work
Serological Pipette Aid Drummond Scientific 4-000-105 Any similar will work
Serological Pipettes (Sterile, various sizes) Pr1ma PR-SERO-25, etc Any similar will work
Sodium Pyruvate Corning 25-000-CI Any similar will work
Sterile Reservoirs Midwest Scientific RESE-2000 Any similar will work
Table top centrifuge Eppendorf 5810R Any similar will work

DOWNLOAD MATERIALS LIST

References

  1. Mitra, A. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol. 14, 1188049 (2023).
  2. Labanieh, L., Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature. 614, 635-648 (2023).
  3. Sterner, R. C., Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11 (4), 69 (2021).
  4. Lisby, A. N., Carlson, R. D., Baybutt, T. R., Weindorfer, M., Snook, A. E. Methods in Cell Biology. 167, Academic Press. 81-98 (2022).
  5. Kiesgen, S., Messinger, J. C., Chintala, N. K., Tano, Z., Adusumilli, P. S. Comparative analysis of assays to measure CAR T-cell-mediated cytotoxicity. Nat Protoc. 16 (3), 1331-1342 (2021).
  6. Schneider, U., Schwenk, H. U., Bornkamm, G. Characterization of EBV-genome negative "null" and "T" cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 19 (5), 621-626 (1977).
  7. Abraham, R. T., Weiss, A. Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol. 4 (4), 301-308 (2004).
  8. Bloemberg, D., et al. A high-throughput method for characterizing novel chimeric antigen receptors in Jurkat cells. Mol Ther Methods Clin Dev. 16, 238-254 (2020).
  9. Lipowska-Bhalla, G., Gilham, D. E., Hawkins, R. E., Rothwell, D. G. Isolation of tumor antigen-specific single-chain variable fragments using a chimeric antigen receptor bicistronic retroviral vector in a Mammalian screening protocol. Hum Gene Ther Methods. 24 (6), 381-391 (2013).
  10. Alonso-Camino, V., et al. CARbodies: Human antibodies against cell surface tumor antigens selected from repertoires displayed on T cell chimeric antigen receptors. Mol Ther Nucleic Acids. 2 (5), e93 (2013).
  11. Jahan, F., et al. Using the Jurkat reporter T cell line for evaluating the functionality of novel chimeric antigen receptors. Front Mol Med. 3, 1070384 (2023).
  12. Subham, S., et al. EGFR as a potent CAR T target in triple negative breast cancer brain metastases. Breast Cancer Res Treat. 197 (1), 57-69 (2023).
  13. Guedan, S., Calderon, H., Posey, A. D. Jr, Maus, M. V. Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 12, 145-156 (2019).
  14. Zaritskaya, L., Shurin, M. R., Sayers, T. J., Malyguine, A. M. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines. 9 (6), 601-616 (2010).
  15. Shan, X., et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol Cell Biol. 20 (18), 6945-6957 (2000).
  16. Wu, W., et al. Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell. 182 (4), 855-871 (2020).
  17. Wang, D. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight. 3 (10), e99048 (2018).
  18. Haggerty, T. J., Dunn, I. S., Rose, L. B., Newton, E. E., Kurnick, J. T. A screening assay to identify agents that enhance T-cell recognition of human melanomas. Assay Drug Dev Technol. 10 (2), 187-201 (2012).
  19. Spencer, V. A., Kumar, S., Paszkiet, B., Fein, J., Zmuda, J. F. Cell culture media for fluorescence imaging: Striking the right balance between signal strength and long-term cell health. Genetic Engineer Biotech News. 34 (10), 16-18 (2014).
  20. Immune Cell Killing Assays for Live-Cell Analysis. , https://www.sartorius.com/en/applications/life-science-research/cell-analysis/live-cell-assays/cell-function/immune-cell-killing (2023).
  21. Kessel, S., et al. High-throughput 3D tumor spheroid screening method for cancer drug discovery using celigo image cytometry. SLAS Technol. 22 (4), 454-465 (2017).

Tags

快速, 体外, 细胞毒性评估, Jurkat, 嵌合抗原受体, 荧光成像, CAR T 细胞, 靶向结构域, 单链可变片段, 链内连接, 铰链结构域, 跨膜结构域, 共刺激结构域, CAR 构建体, CAR-T 细胞, 耗时过程, 昂贵的过程, 测试构建体, 时间和材料投资, 平台, 铰链优化的 CAR 构建体, Jurkat 细胞, 慢病毒摄取, CAR 转导, 荧光成像仪, 细胞溶解,PBMC 衍生的 T 细胞
使用荧<em></em>光成像快速体外细胞毒性评估表达嵌合抗原受体的 Jurkat
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Subham, S., Jeppson, J. D., Gibbs,More

Subham, S., Jeppson, J. D., Gibbs, B. K., Babai, J., Alker, R., Godwin, A. K., Akhavan, D. Rapid In Vitro Cytotoxicity Evaluation of Jurkat Expressing Chimeric Antigen Receptor using Fluorescent Imaging. J. Vis. Exp. (200), e65560, doi:10.3791/65560 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter