-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Chemistry
A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chro...
A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chro...
JoVE Journal
Chemistry
This content is Free Access.
JoVE Journal Chemistry
A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC)

A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC)

Full Text
25,959 Views
10:09 min
March 15, 2017

DOI: 10.3791/55425-v

Katharina Grosser1,2, Nicole M. van Dam1,2

1German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 2Institute of Ecology,Friedrich Schiller University Jena

Summary

Here, we describe in great detail an established and robust protocol for the extraction of glucosinolates from ground plant materials. After an on-column sulfatase treatment of the extracts, the desulfoglucosinolates are eluted and analyzed by high-pressure liquid chromatography.

Transcript

The overall goal of this protocol is to perform an easy and straightforward analysis of glucosinolates in plants and other biological samples. This method, to extract and analyze glucosinolates can be used to answer key questions in plant-insect ecology, plant pathology, plant breeding, and food sciences. The main advantage of this technique is that it's well-validated and broadly applicable to a wide range of biological samples.

Though this method is mainly used to quantify glucosinolates in plant materials, it can also be applied to soils or prepared foodstuffs. This extraction procedure can be performed in almost any lab because you mostly use standard lab equipment. Generally, individuals new to this method will perform the analyzes and inspection better when they read and observe the movie at least once.

To begin the procedure, mix 10 grams of G-25 cross-linked dextrin gel with 125 milliliters of ultra-pure water. Store the mixture in a capped bottle at 4 degrees Celsius. Then, dissolve 10, 000 units of type H-1 arylsulfatase in 30 milliliters of ultra-pure water.

Add to this 30 milliliters of absolute ethanol and stir the mixture well. Centrifuge the mixture at 2, 650 times G for 20 minutes at room temperature. Combine the supernatant with 90 milliliters of absolute ethanol in a beaker.

Mix and pour in new centrifuge tubes. Centrifuge the mixture at 1, 030 times G for 15 minutes at room temperature. Discard the supernatant.

Dissolve and combine the pellets in a total of 25 milliliters ultra-pure water. Vortex the mixture well and then transfer the mixture into 1 milliliter tubes. Store the sulfatate samples at 20 degrees Celsius for up to one year.

Next, weigh about 90 milligrams of sinogram and record the weight to 1 microgram accuracy. Then, dissolve the sinogram monohydrate in 10 milliliters of ultrapure water. Prepare from this sinogram stock solution five reference solutions with concentrations ranging from 50 to 750 micromolar.

Store the reference solutions in 1.5 milliliter tubes at 20 degrees Celsius. Next, for each sample and reference, label a 2 milliliter microcentrifuge tube in a column rack position. Pierce each microcentrifuge tube cap with a dissecting needle for later freeze-drying.

Place the labeled tubes in a block in the same configuration and spacing as the labeled columns. To prepare the glass pipette columns, use a wooden or glass rod to gently press a 1 centimeter by 1 centimeter piece of glass wool into the pipette. Pack the glass wool at the transition of the pipette barrel to stem.

Place a pipette column in each labeled position on the rack. Position the rack over a waste tray. Cut off the end of a plastic 1 milliliter pipette tip.

Shake the prepared dextrin gel well. And then use the widened pipette tip to load 0.5 milliliters of prepared dextrin gel into each column. Check the columns for leaking dextrin gel and replace any leaking columns.

Once all columns have been loaded with dextrin gel, wash each column with 1 milliliter of ultrapure water. Weigh between 50 and 100 milligrams of free stride, finely ground plant material in a 2 milliliter reaction tube with safety cap, and record the weight with 0.1 milligrams accuracy. Place two 3 millimeter diameter metal spheres in each tube.

Add to each tube 1 milliliter of 70%methanol in ultrapure water, and briefly vortex each mixture. Close the tubes with additional safety caps, and place them immediately in a 90 to 92 degrees Celsius water bath. Heat the tubes until the sawput begins to boil.

Transfer the tubes to an ultrasonic bath, and sonic heat the samples for 15 minutes. During sonication, begin thawing the sulfatate sample and sinogram references. After sonication, centrifuge the samples at 2, 700 times G for 10 minutes at room temperature.

Load the supernatants and thawed sinogram references onto the corresponding columns, being careful not to draw plant matter into the pipette. Add 1 milliliter of 70%methanol to each tube. Vortex the mixtures.

And ultrasonic heat the mixtures for 15 minutes. Centrifuge the tubes again under the same conditions as before. Load the supernatants onto the corresponding columns.

Add two 1 milliliter portions of 70%methanol to each column, allowing the columns to run dry between each portion. Wash residual methanol from each column with 1 milliliter of ultrapure water. Then, wash each column with two 1 milliliter portions of 20 millimolar sodium acetate buffer, pH 5.5.

Once the last portions of sodium acetate buffer have drained into the waste rack, remove the rack from the waste tray and dry the feet of the rack with tissue. Position the rack over the block of labeled microcentrifuge tubes, so the column tips are in the corresponding tubes. Load 20 microliters of sulfatate solution onto each column, ensuring that the solution reaches the surface of the column material.

Flush the sulfatate solution into the column material with 50 microliters of sodium acetate buffer. It's very important that the sulfatate is washed down into the column. The enzyme must be on the column to react to the intact glucosinolates bound on the column.

Once the sulfatate solution has been washed down onto each column, cover the columns with aluminum foil. Allow the columns to stand overnight. Next, allude the de-sulfo-glucosinolates from each column with two 0.75 milliliter portions of ultrapure water.

Once the columns have run dry, remove the column rack and cap each tube. Freeze the tubes in liquid nitrogen, or at 80 degrees Celsius for at least 30 minutes. Freeze dry the samples for 12 to 24 hours.

Dissolve each residue in 1 milliliter of ultrapure water. And then transfer each sample and reference to labeled HPLC sample vials. Separate the extracts on a reverse phase CAT column.

Use a detection wavelength of 229 nanometers. Once separated by HPLC, the glucosinolates can be identified by comparison of retention times and UV spectra with known glucosinolate standards. The glucosinolate concentrations in the sample are calculated from a sinogram calibration curve, and literature values for response factors.

From this, the glucosinolate concentrations in the original plant sample can be determined. Under the HPLC conditions used, the unhealthy progoitrin alludes quite early, and is separated from the biologically beneficial glucoraphanin. The endo-glucosinolates are also well separated.

Lyotropic series are observed with increasing side chain links for alconol, methylfol-alconol, and longer chain methyl-solfinol-glucosinolates. Unknown glucosinolates thus can be tentatively classified based on these lyotropic series in combination with UV spectra. With proper preparation, 150 to 200 samples can be extracted by one person in one working day.

It will take another day to allude to columns freeze-dry the samples, and prepare them for HPLC. Following this procedure, other methods, such as LCMS, can be applied to identify unknown desulfo-glucosinolates in your chromatogram. After watching this video, you should have a good understanding of how to extract glucosinolates from your biological samples and analyze them via HPLC.

Don't forget that working with methanol can be extremely hazardous, and should be always done under the fume hood.

Explore More Videos

GlucosinolateExtractionHPLCPlant-insect EcologyPlant PathologyPlant BreedingFood SciencesG-25 Dextrin GelArylsulfataseEthanolCentrifugationSinigrinReference SolutionsFreeze-dryingMicrocentrifuge Tubes

Related Videos

Untargeted Metabolomics from Biological Sources Using Ultraperformance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS)

11:00

Untargeted Metabolomics from Biological Sources Using Ultraperformance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS)

Related Videos

23K Views

A Simple Fractionated Extraction Method for the Comprehensive Analysis of Metabolites, Lipids, and Proteins from a Single Sample

11:17

A Simple Fractionated Extraction Method for the Comprehensive Analysis of Metabolites, Lipids, and Proteins from a Single Sample

Related Videos

35.9K Views

Single-throughput Complementary High-resolution Analytical Techniques for Characterizing Complex Natural Organic Matter Mixtures

09:38

Single-throughput Complementary High-resolution Analytical Techniques for Characterizing Complex Natural Organic Matter Mixtures

Related Videos

8.8K Views

The MPLEx Protocol for Multi-omic Analyses of Soil Samples

10:12

The MPLEx Protocol for Multi-omic Analyses of Soil Samples

Related Videos

11.3K Views

Analysis of Organochlorine Pesticides in a Soil Sample by a Modified QuEChERS Approach Using Ammonium Formate

04:17

Analysis of Organochlorine Pesticides in a Soil Sample by a Modified QuEChERS Approach Using Ammonium Formate

Related Videos

3.5K Views

Workflow Based on the Combination of Isotopic Tracer Experiments to Investigate Microbial Metabolism of Multiple Nutrient Sources

12:47

Workflow Based on the Combination of Isotopic Tracer Experiments to Investigate Microbial Metabolism of Multiple Nutrient Sources

Related Videos

9.6K Views

13C6-Glucose Labeling Associated with LC-MS: Identification of Plant Primary Organs in Secondary Metabolite Synthesis

04:32

13C6-Glucose Labeling Associated with LC-MS: Identification of Plant Primary Organs in Secondary Metabolite Synthesis

Related Videos

954 Views

GC-based Detection of Aldononitrile Acetate Derivatized Glucosamine and Muramic Acid for Microbial Residue Determination in Soil

11:06

GC-based Detection of Aldononitrile Acetate Derivatized Glucosamine and Muramic Acid for Microbial Residue Determination in Soil

Related Videos

17.2K Views

Liquid Chromatography Coupled to Refractive Index or Mass Spectrometric Detection for Metabolite Profiling in Lysate-based Cell-free Systems

14:42

Liquid Chromatography Coupled to Refractive Index or Mass Spectrometric Detection for Metabolite Profiling in Lysate-based Cell-free Systems

Related Videos

5.3K Views

A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC)

10:09

A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC)

Related Videos

26 Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code