-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Cancer Research
Analysis of Liver Microenvironment During Early Progression of Non-Alcoholic Fatty Liver Disease-...
Analysis of Liver Microenvironment During Early Progression of Non-Alcoholic Fatty Liver Disease-...
JoVE Journal
Cancer Research
This content is Free Access.
JoVE Journal Cancer Research
Analysis of Liver Microenvironment During Early Progression of Non-Alcoholic Fatty Liver Disease-Associated Hepatocellular Carcinoma in Zebrafish

Analysis of Liver Microenvironment During Early Progression of Non-Alcoholic Fatty Liver Disease-Associated Hepatocellular Carcinoma in Zebrafish

Full Text
3,770 Views
09:27 min
April 1, 2021

DOI: 10.3791/62457-v

Cassia Michael1,2, Francisco Juan Martínez-Navarro1,2, Sofia de Oliveira1,2,3,4

1Department of Developmental and Molecular Biology,Albert Einstein College of Medicine, 2Department of Medicine (Hepatology),Albert Einstein College of Medicine, 3Einstein-Mount Sinai Diabetes Research Center,Albert Einstein College of Medicine, 4Marion Bessin Liver Research Center,Albert Einstein College of Medicine

Summary

Here, we present how to generate a non-alcoholic fatty liver disease (NAFLD)-associated Hepatocellular Carcinoma (HCC) zebrafish model to study the impact of cholesterol surplus on liver microenvironment and immune cell landscape.

Transcript

Our zebrafish liver cancer models and protocol provide a unique opportunity to visualize in vivo, non-invasively, the liver microenvironment and immune landscape using intravital microscopy. The transparency of the zebrafish larvae is undoubtedly the main advantage of this system, which allows us to perform non-invasive intravital microscopy and gain insight into the microenvironment and immune cell infiltration of a deep tissue and organ, such as liver. Our diet-induced nephrotic model and the imaging techniques described in this protocol can easily be applied to the convoluted cell-cell interactions in other liver diseases or research fields, including metabolic syndrome and cardiovascular diseases.

Demonstrating the procedure will be Cassia Michael, our lab technician, and Dr.Francisco Juan Martinez-Navarro, a postdoctoral fellow in my laboratory. To begin, weigh four grams of commercial dry food diet for zebrafish larvae into two 25-milliliter glass beakers, one for normal diet and the other for the 10%high cholesterol diet, or HCD. Weigh 0.4 grams of cholesterol in a 10-milliliter glass beaker and cover the beaker with foil.

In a fume hood, measure five milliliters of diethyl ether using a 10-milliliter syringe with a 20-gauge needle. Then, add the diethyl ether to the normal diet beaker and immediately mix it with the dry food using a spatula. Measure another five milliliters of diethyl ether using the same syringe and needle and add it to the HCD-containing beaker.

Mix immediately by aspirating up and down with the syringe. Quickly add the cholesterol solution to the HCD beaker and immediately mix it with a spatula until the solution is uniform. Leave beakers in the hood for up to 24 hours to completely evaporate the diethyl ether.

On the next day, grind the diets into fine particles using a pestle and mortar. Transfer each diet to a small, labeled plastic bag or a 50-milliliter centrifuge tube and store them at minus 20 degrees Celsius. Set up transgenic fish lines on day minus one.

On day zero, collect eggs in a mesh strainer after the fish have spawned. Using a wash bottle with E3, rinse the eggs thoroughly and carefully transfer them to 10-centimeter Petri dishes with E3 medium. Clean the plates of all debris that might have accumulated in the breeding boxes, including any dead or unfertilized eggs to avoid the uncontrolled growth of microorganisms and consequent defects in larvae development.

Then divide the eggs at a density of 70 or 80 eggs per dish containing 25 milliliters of E3.On day one, check and clean dead embryos or embryos with developmental defects under a dissection scope equipped with a transillumination base. On day five, combine larvae from all the dishes in a 15-centimeter Petri dish and add E3 without methylene blue. Divide larvae in the feeding boxes and feed them as described in the text manuscript.

Keep the larvae in the zebrafish room or an incubator at 28 degrees Celsius in a dark-light cycle and feed them twice a day from day 5 to day 12. Remove food debris daily as well as 90 to 95%of the medium using a vacuum system attached to a one-milliliter pipette tip. Then, carefully pour the new E3 without methylene blue into one corner of the feeding box to avoid damaging the larvae.

Alternatively, the larvae can be divided into three-liter tanks with system water and placed as a standalone system unit with a low water flow. This alternative saves the time required for the daily cleaning process, and the filtration system helps keep the larvae healthy until endpoint. On day 13, prepare collection dishes according to the number of experimental conditions that were set up.

Pour enough E3 without methylene blue to cover the bottom of each dish. Then, carefully, using the vacuum system, aspirate the water from the feeding boxes. When the water level starts to get low, slowly lift the feeding box to make larvae swim to one of the corners, then aspirate in the opposite direction.

Once only about 20 to 30 milliliters of the liquid remain, carefully decant larvae into the prepared collection Petri dish and place the labeled tape from the feeding box on the lid of the dish. On a fluorescence stereomicroscope, screen the anesthetized larvae for desired fluorescent markers. Then add tricaine E3 into the chambers of the wounding and entrapment device.

Remove air bubbles from the chambers and the restraining channel using a P-200 micropipette. Remove all excess tricaine E3, leaving only enough volume to fill the chambers. Next, transfer an anesthetized larvae into the loading chamber of the wounding and entrapment device and position it for imaging of the left lobe using an eyelash tool.

Image the morphology of all the required cells in the liver under a confocal microscope as described in the text manuscript. Open the Fiji software. Then open the image file and tick the Split channels option from the Bio-Format Import Options tab.

After creating maximum intensity projections for each channel, create an ROI surrounding the larval liver and measure the liver area. Then, add a scale bar as a reference and create a second ROI including the liver area and 75 micrometers of the surrounding area. In the Plugins menu, select the Analyze option followed by Cell Counter and count the immune cells inside the recruitment area.

Record the number of recruited immune cells on a spreadsheet. Calculate the neutrophil, macrophage, and T-cell densities by normalizing the number of immune cells per liver area. HCC zebrafish larvae fed with a normal diet show no hepatic steatosis, as measured by Oil Red O staining.

However, HCC larvae fed with HCD show a significant increase in hepatic steatosis. After eight days of exposure to a cholesterol surplus, liver enlargement was observed in HCC larvae. To assess hepatomegaly, the liver area, liver surface area, and liver volume were evaluated.

In non-alcoholic steatohepatitis-associated HCC, the hepatocyte area, along with the nuclear area, and nuclear-to-cytoplasmic ratio were increased. A significant decrease in nuclear circularity was also observed in the high fat diet-fed HCC group. Using the H2B-mCherry marker, a greater incidence of micronuclei was detected in the HCC larvae fed with HCD.

Hepatic vasculature evaluation showed a significant increase in vessel density in HCC larvae fed with HCD. Infiltration of macrophages and neutrophils occurred in both HCC and HCC fed with HCD larvae. Quantification of neutrophils in macrophages in the liver and its vicinity showed a significant increase in the number and density of the cells in HCC larvae fed with HCD.

In contrast, a significant decrease in T-cell density in overall number was observed in HCC larvae fed with HCD. The cleaning of the tanks and the feeding are the most important steps to assure larvae viability and avoiding development of steatosis or liver and systemic chronic inflammation in the controls due to poor quality of the water or improper feeding. Other methods such as time-lapse microscopy and analysis of the interaction between the different cells populating the liver can be performed.

Additionally, single-cell RNA-seek of dissected livers at different liver cancer stages can be performed to understand in full how the liver immune landscape evolves with disease progression.

Explore More Videos

Liver MicroenvironmentNon-alcoholic Fatty Liver DiseaseHepatocellular CarcinomaZebrafish ModelsIntravital MicroscopyImmune Cell InfiltrationDiet-induced Nephrotic ModelHigh Cholesterol DietCholesterol SolutionDiet PreparationTransgenic Fish LinesE3 MediumMetabolic SyndromeCardiovascular Diseases

Related Videos

Hepatocyte-specific Ablation in Zebrafish to Study Biliary-driven Liver Regeneration

08:14

Hepatocyte-specific Ablation in Zebrafish to Study Biliary-driven Liver Regeneration

Related Videos

8.9K Views

Development of an Ethanol-induced Fibrotic Liver Model in Zebrafish to Study Progenitor Cell-mediated Hepatocyte Regeneration

10:42

Development of an Ethanol-induced Fibrotic Liver Model in Zebrafish to Study Progenitor Cell-mediated Hepatocyte Regeneration

Related Videos

9.3K Views

High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake

11:30

High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake

Related Videos

10.7K Views

Histological Analyses of Acute Alcoholic Liver Injury in Zebrafish

10:45

Histological Analyses of Acute Alcoholic Liver Injury in Zebrafish

Related Videos

14.7K Views

Quantifying Liver Size in Larval Zebrafish Using Brightfield Microscopy

07:35

Quantifying Liver Size in Larval Zebrafish Using Brightfield Microscopy

Related Videos

6.9K Views

Generation of Zebrafish Larval Xenografts and Tumor Behavior Analysis

12:08

Generation of Zebrafish Larval Xenografts and Tumor Behavior Analysis

Related Videos

13.2K Views

Study of Viral Vectors in a Three-dimensional Liver Model Repopulated with the Human Hepatocellular Carcinoma Cell Line HepG2

09:13

Study of Viral Vectors in a Three-dimensional Liver Model Repopulated with the Human Hepatocellular Carcinoma Cell Line HepG2

Related Videos

8.3K Views

Advanced Animal Model of Colorectal Metastasis in Liver: Imaging Techniques and Properties of Metastatic Clones

11:43

Advanced Animal Model of Colorectal Metastasis in Liver: Imaging Techniques and Properties of Metastatic Clones

Related Videos

13.1K Views

Murine Model of Metastatic Liver Tumors in the Setting of Ischemia Reperfusion Injury

05:59

Murine Model of Metastatic Liver Tumors in the Setting of Ischemia Reperfusion Injury

Related Videos

12K Views

Generation of a Liver Orthotopic Human Uveal Melanoma Xenograft Platform in Immunodeficient Mice

04:02

Generation of a Liver Orthotopic Human Uveal Melanoma Xenograft Platform in Immunodeficient Mice

Related Videos

8.9K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code