JoVE Journal

Bioengineering

JoVE Bioengineering features the application of engineering tools in life sciences to study biological processes and develop new therapies and diagnostics.
12345678927 629 VIDEO ARTICLES

Visual Detection of Multiple Nucleic Acids in a Capillary Array

1Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 2State Key Laboratory of Oncogenes and Related Genes, 3School of Biomedical Engineering, Shanghai Jiao Tong University, 4Collaborative Innovation Center for Biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 5Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, 6Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University

JoVE 56597


 Bioengineering

Fabrication and Characterization of Griffithsin-modified Fiber Scaffolds for Prevention of Sexually Transmitted Infections

1Department of Chemistry, University of Louisville, 2Department of Pharmacology and Toxicology, University of Louisville, 3Center for Predictive Medicine, University of Louisville, 4Department of Microbiology and Immunology, University of Louisville, 5Department of Bioengineering, University of Louisville

JoVE 56492


 Bioengineering

Long-term Live Imaging Device for Improved Experimental Manipulation of Zebrafish Larvae

1Department of Biomedical Engineering, University of Wisconsin-Madison, 2Morgridge Institute for Research, University of Wisconsin-Madison, 3Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, 4Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, 5Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 6Department of Pediatrics, University of Wisconsin-Madison

JoVE 56340


 Bioengineering

An Efficient and Reproducible Protocol for Distraction Osteogenesis in a Rat Model Leading to a Functional Regenerated Femur

1CNRS, ISM, Inst Movement Sci, Aix Marseille Univ, 2Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, APHM, 3Sainte-Marguerite Hospital, Institute for Locomotion, Department of Peadiatric Orthopaedics, APHM, 4Ecole centrale de Marseille, 5Faculté de Pharmacie, Laboratoire de Biochimie, 6Service Central de la Qualité et de l'Information Pharmaceutiques, APHM

JoVE 56433


 Bioengineering

Metabolic Support of Excised, Living Brain Tissues During Magnetic Resonance Microscopy Acquisition

1Department of Neuroscience, University of Florida, 2McKnight Brain Institute, University of Florida, 3Department of Biomedical Engineering, University of Florida, 4Center for Functionally Integrative Neuroscience, Aarhus University, 5Department of Radiology, University of Florida, 6National High Magnetic Field Laboratory, Florida State University

JoVE 56282


 Bioengineering

Semiautomated Longitudinal Microcomputed Tomography-based Quantitative Structural Analysis of a Nude Rat Osteoporosis-related Vertebral Fracture Model

1Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, 2Department of Surgery, Cedars-Sinai Medical Center, 3Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 4Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 5Department of Orthopedics, Cedars-Sinai Medical Center

JoVE 55928


 Bioengineering

Fabrication and Validation of an Organ-on-chip System with Integrated Electrodes to Directly Quantify Transendothelial Electrical Resistance

1BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology and Max Planck Center for Complex Fluid Dynamics, University of Twente, 2Microsystems, Eindhoven University of Technology, 3Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente

JoVE 56334


 Bioengineering

An Experimental Protocol for Assessing the Performance of New Ultrasound Probes Based on CMUT Technology in Application to Brain Imaging

1Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 2Department of Information Engineering, University of Florence, 3Department of Engineering, Roma Tre University, 4FTMTR&D/SPA, STMicroelectronics, 5Brain Connectivity Center, BCC, Istituto Neurologico Nazionale Fondazione C. Mondino I.R.C.C.S., 6Department of Molecular Medicine - Unit of Pathology, University of Pavia, Foundation IRCCS Policlinico San Matteo

JoVE 55798


 Bioengineering

12345678927

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting