Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

9.9: Alkynes to Aldehydes and Ketones: Hydroboration-Oxidation

TABLE OF
CONTENTS
JoVE Core
Organic Chemistry

A subscription to JoVE is required to view this content.

Education
Alkynes to Aldehydes and Ketones: Hydroboration-Oxidation
 
TRANSCRIPT

9.9: Alkynes to Aldehydes and Ketones: Hydroboration-Oxidation

Introduction

One of the convenient methods for the preparation of aldehydes and ketones is via hydration of alkynes. Hydroboration-oxidation of alkynes is an indirect hydration reaction in which an alkyne is treated with borane followed by oxidation with alkaline peroxide to form an enol that rapidly converts into an aldehyde or a ketone. Terminal alkynes form aldehydes, whereas internal alkynes give ketones as the final product.

Figure1

Mechanism

The hydroboration-oxidation reaction is a two-step process. It begins with the hydroboration step, which involves a concerted syn addition of BH3 across the carbon–carbon triple bond to form an alkenylborane. The concerted nature of the reaction also accounts for the anti-Markovnikov regiochemistry, where the BH2 group adds to the less substituted carbon and H to the more substituted carbon of the triple bond.

Figure2

 Three successive hydroboration reactions convert an alkene into a trialkenylborane intermediate. The second part of the sequence is oxidation, where the trialkenylborane is treated with alkaline hydrogen peroxide to form an enol. The enol eventually converts into a stable carbonyl product via keto-enol tautomerism.

Figure3

Hydroboration of Alkynes with Disubstituted Boranes

Unlike alkenes, hydroboration of alkynes does not stop at the first addition of BH3. This is because alkynes have two π bonds, each capable of reacting with BH3. The first addition forms an organoborane, which is an alkene derivative that can react further with another equivalent of BH3.

Terminal alkynes being less hindered than internal alkynes are more susceptible to a second BH3 addition. With internal alkynes, the addition of BH3 stops after the first stage and proceeds in a direction to give the trialkenylborane.

Figure4

 Nevertheless, hydroboration of terminal alkynes can be stopped at the first step by using bulky disubstituted boranes (R2BH) such as disiamylborane and 9-BBN instead of BH3.

Figure5

The first addition of the bulky reagent forms a sterically hindered alkenylborane that resists any further additions and helps in the efficient conversion of alkynes to stable carbonyl compounds.

Figure6

Tags

Alkynes Aldehydes Ketones Hydroboration-oxidation Hydration Borane Oxidation Enol Mechanism Regiochemistry Alkene Trialkenylborane Alkaline Hydrogen Peroxide Keto-enol Tautomerism Disubstituted Boranes Organoborane

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter