Summary

二维和三维活细胞成像的DNA损伤反应蛋白

Published: September 28, 2012
doi:

Summary

该协议描述了一个可视化的DNA双链断裂以及其定位在有丝分裂过程中DNA损伤激活的信号蛋白的方法。

Abstract

双链断裂(DSBs)是最有害的DNA病变的细胞可能会遇到。如果未修复,DNA双链断裂港口的巨大潜力产生突变和染色体畸变1。为了防止这种创伤催化基因组的不稳定性,这是至关重要的,检测DNA双链断裂的细胞,激活DNA损伤反应(DDR),并修复DNA。解除武装,复员和重返社会工作的刺激时,通过触发细胞周期阻滞,以便维修发生或强制的细胞发生凋亡,以维持基因组的完整性。 DSB修复发生的主要机制通过非同源末端连接(NHEJ)和同源重组修复(HRR)(评论2例 )。有许多的蛋白质,其活动必须精确精心策划的解除武装,复员和重返社会正常运行。这里,我们描述了一种方法,2 – 和3 – 维(D)的可视化这些蛋白质之一,53BP1。

p53结合蛋白1(53BP1)定位于地区DNA双链断裂的修饰组蛋白3,4结合,形成病灶在5-15分钟内5。组蛋白修饰和招聘53BP1和其他DDR蛋白DSB网站被认为是染色质的结构重排,以方便周边地区的损失,并有助于DNA修复6。除了 ​​直接参与修复,额外的角色被描述为53BP1在解除武装,复员和重返社会,如调节内-S检验点,G2 / M检验点,并激活下游DDR蛋白7-9。最近,人们发现,53BP1没有形成病灶在有丝分裂过程中DNA损伤,而不是等待细胞进入G1前定位附近的DNA双链断裂6。如53BP1 DDR蛋白质已被发现与有丝分裂的结构(如着丝粒)相关联的进展通过有丝分裂10期间。

在这个协议中,我们描述了使用2 – 和3-D的活细胞成像的可视化53BP1灶形成的DNA损伤剂喜树碱(CPT),以及53BP1在有丝分裂过程中的行为。喜树碱是拓扑异构酶I抑制剂,主要引起DNA双链断裂DNA复制过程中。要做到这一点,我们使用先前描述的53BP1 mCherry荧光融合蛋白结构的53BP1的蛋白质结构域的能够结合DNA双链断裂11。此外,我们使用组蛋白H2B-GFP的荧光融合蛋白的构建,能够监控整个细胞周期,但在特定的染色质的动态,在有丝分裂12。活细胞成像技术在多个方面,是一个很好的工具,以加深我们对DDR在真核细胞中的蛋白质的功能。

Protocol

A.细胞制备正常人体主要的成纤维细胞(GM02270)卡瑞尔细胞储存库,卡姆登,新泽西州,并与hTERT 6永生。细胞生长和扩大在蜂星6-cm培养皿在媒体(4毫升)组成的MEM培养基与20%的胎牛血清(GIBCO),的non-essential/essential氨基酸,维生素,丙酮酸钠,和青霉素/链霉素(HyClone公司)。 人胚胎肾293(HEK293)细胞,从美国典型培养物保藏中心获得的,并在蜂星6-cm培养皿中生长和?…

Discussion

维持基因组的完整性,细胞的生存是至关重要的。如果保存的基因组会导致过早衰老,癌变,死亡8。有浓厚的兴趣,挑剔的DDR功能,源于其基础和临床研究的重要性。多年来,以帮助在细胞如何检测和修复DNA损伤的研究已开发了许多技术。传统的方法,如免疫细胞化学和西方墨点法领域的支柱,尽管最近的技术进步已经使日益复杂的方法发展。活细胞成像,在该协议中详细说明,使我们?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

支持部分由R01NS064593和R21ES016636(KV)。显微镜进行VCU – 神经生物学与解剖学显微镜设备,部分支持,资金从NIH-NINDS中心的核心授予5P30NS047463的。旋转盘共聚焦显微镜购买的与NIH-NCRR的奖(1S10RR027957)。

Materials

Product Company
CellStar culture dishes Greiner Bio-one
FluroDish glass bottom dishes World Precision Instruments, Inc.
MEM media GIBCO
Non-essential amino acids GIBCO
Amino acids GIBCO
Vitamins GIBCO
Sodium Pyruvate Invitrogen
Penicillin/Streptomycin HyClone
Fetal Bovine Serum GIBCO
N-Myc-53BP1 WT pLPC-Puro;
plasmid 19836
Addgene
pCLNR-H2BG; plasmid 17735 Addgene
SuperFect Qiagen
Zeiss Cell Observer SD Imaging system Zeiss
AxioVision (release 4.8.2) Zeiss
Zeiss Immersol W Oil Zeiss
Volocity software (version 6.0) PerkinElmer

References

  1. Botuyan, M. V., Lee, J., Ward, I. M., Kim, J. E., Thompson, J. R., Chen, J., Mer, G. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 127, 1361-1373 (2006).
  2. Dimitrova, N., Chen, Y. C., Spector, D. L., de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 456, 524-528 (2008).
  3. Feuerhahn, S., Egly, J. M. Tools to study DNA repair: what’s in the box. Trends Genet. 24, 467-474 (2008).
  4. Giunta, S., Belotserkovskaya, R., Jackson, S. P. DNA damage signaling in response to double-strand breaks during mitosis. J. Cell Biol. 190, 197-207 (2010).
  5. Giunta, S., Jackson, S. P. Give me a break, but not in mitosis: the mitotic DNA damage response marks DNA double-strand breaks with early signaling events. Cell Cycle. 10, 1215-1221 (2011).
  6. Golding, S. E., Morgan, R. N., Adams, B. R., Hawkins, A. J., Povirk, L. F., Valerie, K. Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol. Ther. 8, 730-738 (2009).
  7. Huyen, Y., Zgheib, O., Ditullio, R. A., Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheston, E. A., Mellert, H. S., Stavridi, E. S., Halazonetis, T. D. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 432, 406-411 (2004).
  8. Jackson, S. P., Bartek, J. The DNA-damage response in human biology and disease. Nature. 461, 1071-1078 (2009).
  9. Kanda, T., Sullivan, K. F., Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377-385 (1998).
  10. Massignani, M., Canton, I., Sun, T., Hearnden, V., Macneil, S., Blanazs, A., Armes, S. P., Lewis, A., Battaglia, G. Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. PLoS One. 5, e10459 (2010).
  11. Nakamura, K., Sakai, W., Kawamoto, T., Bree, R. T., Lowndes, N. F., Takeda, S., Taniguchi, Y. Genetic dissection of vertebrate 53BP1: a major role in non-homologous end joining of DNA double strand breaks. DNA Repair (Amst). 5, 741-749 (2006).
  12. Schultz, L. B., Chehab, N. H., Malikzay, A., Halazonetis, T. D. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell. Biol. 151, 1381-1390 (2000).
  13. Valerie, K., Povirk, L. F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 22, 5792-5812 (2003).
  14. Wang, B., Matsuoka, S., Carpenter, P. B., Elledge, S. J. 53BP1, a mediator of the DNA damage checkpoint. Science. 298, 1435-1438 (2002).
  15. Ward, I. M., Minn, K., Jorda, K. G., Chen, J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 278, 19579-19582 (2003).
check_url/4251?article_type=t

Play Video

Cite This Article
Beckta, J. M., Henderson, S. C., Valerie, K. Two- and Three-Dimensional Live Cell Imaging of DNA Damage Response Proteins. J. Vis. Exp. (67), e4251, doi:10.3791/4251 (2012).

View Video