Summary

半胱氨酸残基的溶剂可及性分析<em>玉米rayado菲诺病毒</em病毒样颗粒<em>烟草</em植物和交联的肽类病毒颗粒

Published: February 14, 2013
doi:

Summary

的方法来分析半胱氨酸残基的巯基的溶剂可及<em>玉米rayado菲诺病毒</em>(MRFV) – 病毒样颗粒(VLPs)随后的肽交联反应的说明。的方法,利用几个化学基团的表面上的,可以是特定的反应,目标的病毒样颗粒的可用性。

Abstract

病毒特性和物理化学和物理特性的模仿和开发持有世界上一些最紧迫的挑战提供解决方案的承诺。前所未有的范围和种类,加上有趣的特性的病毒可能给病毒为基础的技术的应用带来无穷的机遇。病毒有标注自组装成离散形状和大小,对称的特异性,多价,并稳定的特性在宽范围的温度和pH条件下的颗粒。毫不奇怪的是,这样一个显着的性能范围,病毒被建议使用的生物材料,疫苗,14,15,电子化学材料,工具和分子电子容器4,5,10,11,16,18,12。

为了利用纳米技术的病毒,他们必须修改其自然的形式注入新的功能。这一具有挑战性的公关ocess可以通过几种机制,包括遗传修饰的病毒基因组和化学外国或期望的分子附着到病毒颗粒的反应性基团8执行。修改病毒的能力主要取决于病毒的理化性质和物理性质。此外,在遗传或理化修改需要被执行,而不会不利地影响该病毒的天然结构和病毒的功能。 玉米rayado菲诺的病毒 (MRFV)外壳蛋白的自组装生产稳定和空的病毒样颗粒是稳定的蛋白质-蛋白质在大肠杆菌中的相互作用,这可用于在病毒为基础的技术的应用程序8。在烟草植物中产生的VLPs检查作为支架的多种肽可以通过共价键显示13。这里,我们描述的步骤1)确定的溶剂可在病毒衣壳的半胱氨酸可用于修饰的BIOCONJUGATE肽的阳离子,和2)的变形的衣壳。通过使用天然的或突变体插入的氨基酸残基和标准耦合技术,有各种各样的材料被植物如, 雀麦花叶病毒 3, 康乃馨斑驳病毒 12, 豇豆褪绿斑驳病毒 6, 烟草花叶病毒的表面上显示病毒 17, 芜菁黄花叶病毒 ,和MRFV 13。

Protocol

1。从烟草植物的病毒接种,病毒颗粒的纯化生产马铃薯X病毒 (PVX)载体质粒携带的上限从T7 RNA的转录:MRFV野生型(WT)和半胱氨酸突变外壳蛋白基因(CP)12,使用Ambion公司的的T7-mMessage mMachine。 对于每个T7转录反应,接种两个完全展开的叶片,N.本生烟用10μl反应孵育10天的植物在温室中,在湿度60%,16小时的光(25,000-30,000勒克斯),在25℃,在20℃下…

Representative Results

瞬时表达的突变体MRFV的外壳蛋白(CP)基因N.在PVX基于矢量产生的VLPs benthamiana植物是图1中描述。的改性MRFV外壳蛋白基因,通过PCR扩增,然后放置在PVX基于的矢量,pP2C2S 2,(D. Baulcombe,塞恩斯伯里实验室,英格兰诺里奇礼物)的重复的亚基因组的CP启动子的转录控制下。体外 RNA转录产生的RNA转录物,然后用于接种N. benthamiana植物。在受感染的植物(…

Discussion

这里介绍的方法,使一个非常敏感的和快速的分析本植物生产的VLPs的表面上,以及对其他蛋白复合物的反应性半胱氨酸。马来酰亚胺是硫醇的特定的试剂,与自由的含巯基的分子反应以形成稳定的硫醚键。此方法绘制的马来酰亚胺与巯基反应,不参与与其它氨基酸的相互作用的特异性。保的天然结构的VLPs在整个过程中是非常重要的。在描述的应用程序中,反应是在非变性条件下进行,并在pH为7?…

Disclosures

The authors have nothing to disclose.

Materials

Name of the reagent Company Catalog number Comments
Thinwall, Ultra-Clear Tubes Beckman 344059  
mMESSAGE mMACHINE T7 Kit Life Tecnologies AM1344M  
Fluorescein-5-Maleimide Thermo Scientific Life Technologies 46130 F150 46130 is out of order substitute with F150
Pierce Biotin Quantitation Kit Thermo Scientific 28005  
EZ-Link Maleimide-PEG2-Biotin, No-Weigh Format Thermo Scientific 21901  
SM(PEG)n Crosslinkers Thermo Scientific 22107  
10-20% Tris-Glycine gel Invitrogen EC61352  
Laemmli Buffer Bio-Rad 1610737  
Tris Glycine SDS Running Buffer Invitrogen LC2675  
Tris Glycine Transfer Buffer Invitrogen LC3675  
Nitrocellulose Membrane Filter Paper Sandwich Invitrogen LC2001  
Phosphatase Labeled Affinity Purified Antibody to Rabbit IgG Kirkegaard and Perry Laboratories 0751516  
NBT/BCIP Phosphatase Substrate Kirkegaard and Perry Laboratories 508107  

References

  1. Barnhill, H., Reuther, R., Ferguson, P. L., Dreher, T. W., Wang, Q. Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconj. Chem. 18, 852-859 (2007).
  2. Chapman, S., Kavanagh, T., Baulcombe, D. Potato virus X as a vector for gene expression in plants. Plant J. 2, 549-557 (1992).
  3. Chen, C., Kwak, E. S., Stein, B., Kao, C. C., Dragnea, B. Packaging of gold particles in viral capsids. J. Nanosci. Nanotechnol. 5, 2029-2033 (2005).
  4. Fowler, C. E., Shenton, W., Stubbs, G., Mann, S. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Advanced Materials. 13, 1266-1269 (2001).
  5. Gazit, E. Use of biomolecular templates for the fabrication of metal nanowires. FEBS. J. 274, 317-322 (2007).
  6. Gillitzer, E., Wilts, D., Young, M., Douglas, T. Chemical modification of a viral cage for multivalent presentation. Chem. Commun. , 2390-2391 (2002).
  7. Hammond, R. W., Hammond, J. Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli. Virus Res. 147, 208-215 (2010).
  8. Hermamson, G. T. . Bioconjugate techniques. , (1991).
  9. Kaiser, C. R., Flenniken, M. L., Gillitzer, E., Harmsen, A. L., Harmsen, A. G., Jutila, M. A., Douglas, T., Young, M. J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomed. 2, 715-733 (2007).
  10. Knez, M., Bittner, A. M., Boes, F., Wege, C., Jeske, H., Maisse, E., Kern, K. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett. 3, 1079-1082 (2003).
  11. Lee, S. Y., Culver, J. N., Harris, M. T. Effect of CuCl2 concentration on the aggregation and mineralization of Tobacco mosaic virus biotemplate. J. Colloid. Interface. Sci. 297, 554-560 (2006).
  12. Lvov, Y., Haas, H., Decher, G., Mohwald, H., Mikhailov, A., Mtchedlishvily, B., Morgunova, E., Vainshtein, B. Successive deposition of alternate layers of polyelectrolytes and a charged virus. Langmuir. 10, 4232-4236 (1994).
  13. Natilla, A., Hammond, R. W. Maize rayado fino virus virus-like particles expressed in tobacco plants: a new platform for cysteine selective bioconjugation peptide display. J. Virol. Methods. 178, 209-215 (2011).
  14. Rae, C. S., Khor, I. W., Wang, Q., Destito, G., Gonzalez, M. J., Singh, P., Thomas, D. M., Estrada, M. N., Powell, E., Finn, M. G., Manchester, M. Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology. 343, 2224-2235 (2005).
  15. Raja, K. S., Wang, Q., Gonzalez, M. J., Manchester, M., Johnson, J. E., Finn, M. G. Hybrid virus-polymer materials. Synthesis and properties of PEG-decorated Cowpea mosaic virus. Biomacromolecules. 4, 472-476 (2003).
  16. Royston, E., Lee, S. Y., Culver, J. N., Harris, M. T. Characterization of silica-coated Tobacco mosaic virus. J. Colloid Interface Sci. 298, 706-712 (2006).
  17. Schlick, T. L., Ding, Z., Kovacs, E. W., Francis, M. B. Dual-surface modification in the Tobacco mosaic virus. J. Am. Chem. Soc. 127, 3718-3723 (2005).
  18. Young, M., Willits, D., Uchida, M., Douglas, T. Plant viruses as biotemplates for materials and their use in nanotechnology. Annu. Rev. Phytopathol. 46, 361-384 (2008).

Play Video

Cite This Article
Natilla, A., Hammond, R. W. Analysis of the Solvent Accessibility of Cysteine Residues on Maize rayado fino virus Virus-like Particles Produced in Nicotiana benthamiana Plants and Cross-linking of Peptides to VLPs. J. Vis. Exp. (72), e50084, doi:10.3791/50084 (2013).

View Video