Summary

组织化学染色<em>拟南芥</em>次生壁元素

Published: May 13, 2014
doi:

Summary

Plant cell wall composition varies between tissue types and can include lignin, cellulose, hemicelluloses, and pectin. Various staining techniques have been developed to visualize differences at the cell-type level. This paper is a compilation of commonly used cell wall staining techniques.

Abstract

Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40–50%), hemicellulose (25–30%), and lignin (20–30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.

Introduction

植物细胞壁持有大量的信息及其各种部件之内:木质素,纤维素,半纤维素(木聚糖,葡糖醛酸,木葡聚糖,阿拉伯木聚糖,混合联动葡聚糖,或葡甘露聚糖),以及果胶。组织学技术提供学习辅助小区围墙内的差异在组织和细胞水平的重要的视觉线索。不同组织学技术被开发,可在文献中找到,但这些技术可以是具有挑战性和费时的初学者,因为用简单的视觉指示非常详细的协议很少,如果以往任何时候都可用。本研究的目的是为组织学染色技术简单的指引,以获得高质量的图像。

切片的茎组织中的细胞壁和细胞形状可视化的第一步。虽然手工切割的部分是价格便宜,需要较少的准备时间,使用vibratome的提供一致性和得到高品质的图像。使用vibratome允许产生更好的数据质量通过生成具有相同的厚度,这有助于产生清晰的图像和显著降低了生产样品之间不准确的差异,将通过一个坏的样品制备可简单地造成的危险,即使部分。使用树脂来修复新鲜标本可以对初学者是一个挑战,可能仍然是费时即使是专家的分析需要快速完成时。此外,它变得不可能测量任何生物活性与样品时,它已被埋入树脂。一个简单的技术,它采用琼脂糖和一个自制的模具是用于嵌入茎组织中有用,并且它也可以在需要的软组织解剖其它应用程序使用。相比,在树脂包埋的标本,该方法具有保持组织存活和减少样品操作的优点。通过vibratome切片组织是高度精确的,并生成均质项部分,其中,根据不同的研究的目标,然后可以用几种不同的染色技术中使用。

可视化的木质素和其它芳族化合物的最简单的方法,采用紫外线(UV)光。基于芳族化合物的分子被紫外光激发是一个古老的技术,但它仍然是最快的方法对木质素的可视化1。然而,紫外线的可视化其实是不理想的木质素检测,因为紫外线会激发其他芳烃。木质素主要由三个组成部分中,monolignols(hydroxycinnamyl醇:松柏醇,芥子醇,和 -香豆醇)达1-3。间苯三酚染色可以提供线索,存在于木质部,纤维和气管组织4肉桂醛的程度。间苯三酚是一般的肉桂醛的一个良好指标,肉桂醛和芳香等可以区分。可以被检测到的芥子醇单体并通过区分使用马乌莱污点。甲苯胺蓝O是一个多色染料,因此具有染色细胞壁的不同元素以不同的颜色5,6的能力。主要使用的甲苯胺蓝O是检测果胶和木质素5,6。使用甲苯胺蓝澳的优点在于,细胞壁的许多元件可以在一个步骤中被可视化。这两种钙荧光白,刚果红是易于使用,可用于可视化纤维素。钙荧光白渍纤维素,胼胝质,和其他非取代的或弱取代的β-葡聚糖6-9,而刚果红染色直接向β-(1→4) -葡聚糖,特别是在纤维素10,11。这项研究的目标是提供简单的指引,使用上述染色技术,以从A获得高品质的图像拟南芥的茎。

Protocol

1,干嵌入使在水中的7%的琼脂糖溶液(7克电泳级琼脂糖在100毫升蒸馏水中)。通过高压灭菌20分钟,或以最低的强度( 例如 ,10%1250瓦特微波的强度)微波20分钟溶解琼脂糖。 准备一个自制的模具嵌入茎用塑料瓶。 使用刀片,切断2毫升的螺旋盖离心管(A部分)的锥形底部。用注射器针头,穿刺在管帽上的孔比茎要被嵌入的直径稍大。接着,切0.5厘米了0.6 ml离心管?…

Representative Results

干嵌入和切片: 使用自制的塑料模具中嵌入的杆在7%琼脂糖证明是快速和容易的( 图1)。这两个部分(A和B; 图1)嵌入式小瓶系统变得简单轻松地释放嵌入琼脂糖的琼脂糖不会粘到小瓶部分是惰性干,保持系统清洁。小瓶可以多年重复使用多次。存储嵌入式干的便利也使得接下来的步骤更简单。为了节省某个时候,类似的嵌入式茎可以分组(最多3个)在一个切片?…

Discussion

拟南芥茎段被广泛用于研究细胞在次生壁的组织和定性研究野生型和转基因植物之间的差异。常用的技巧切片标本是直接手工切割;或当试样被嵌入在琼脂糖或固定剂,切片,可以用vibratome或切片进行。而相比之下,手工切割,最后两个允许减少生产样品之间的差异不准确的,将通过所引起的样品和不平坦的表面之间的厚度差的不良样品的制备可以简单地造成的风险。所有这些方法都有各?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢萨宾罗素编辑协助。 (http://www.jbei.org)支持由美国能源部,科学,生物和环境研究办公室,办公室这项工作是美国能源部联合生物能源研究所的一部分通过合同DE-AC02-05CH11231劳伦斯伯克利之间国家实验室和美国能源部门。

Materials

 Agarose EMD MERC2125 CAS Number: 9012-36-6
Phloroglucinol Sigma P 3502 1,3,5-trihydroxybenzene [CAS Number: 108-73-6]
Hydrochloric Acid EMD HX0603-75 CAS Number: 7647-01-0
Ammonium hydroxide EMD AX1303-6 CAS Number: 1336-21-6
Toulidine Blue O Sigma T3260 Blutene chloride, Tolonium Chloride [CAS Number 92-31-9] 
Potassium permanganate Sigma 223468 CAS Number 7722-64-7 
Ethanol 190 proof KOPTEC V1401 CAS Number: 64-17-5
Congo Red Sigma  C6277 Disodium 3,3'-[[1,1'-biphenyl]-4,4'-diylbis(azo)]bis(4-aminonaphthalene 1-sulphonate) [CAS Number 573-58-0 ]
Fluorescent Brightener 28/ Calcofluor White Stain Sigma F3543  4,4'-Bis[4-[bis(2-hydroxyethyl)amino]-6-anilino-1,3,5-triazin-2-yl]amino]stilbene-2,2'-disulphonic acid [CAS Number 4404-43-7] 
Vibratome Leica Leica Vibrating blade microtome VT1000S http://www.leicabiosystems.com/products/sectioning/vibrating-blade-microtomes/details/product/leica-vt1000-s/
Razor American Safety razor company Item # 60-0139-0000  Stainless Steel Double Edge Blade (Personna Super)
Screw Cap Microcentrifuge Tubes (2ml) VWR 16466-044
Microcentrifuge Tubes (0.6ml) Axygen Scientific MCT-060-C
Mitt Bel-Art 380000000 SCIENCEWARE  Hot Hand Protector Mitt
Tissue adhesive  Ted Pella Inc 10033 Store at 4°C or 20°C for 3 months or longer  storage 
Microwave Panasonic NN-SD762S PELCO Pro CA 44 Instant tissue adhesive 
Camera with CCD chip with no mechanical shutter  Hamamatsu C4742-95
High speed color camera    QImaging MicroPublisher 5.0 RTV
Camera software   Molecular Devices MetaMorph version 7.7.0.0
Imagining anaylsis  Adobe  Photoshop CS4
Micro Cover Glasses, Square, No.1 VWR 48366-067 22 x 22 mm (7/8 x 7/8")-Cover glasses are corrosion-resistant and uniformly thick and flat. No. 1 thickness is 0.13 to 0.17mm. 
Frosted Micro Slides, 1mm VWR 48312-003 75 x 25 mm- 1mm
TX2 Filter cube Leica 11513851/11513885 Filter used for Congo red analysis with a band-pass of 560/40.
Parafilm M Alcan packaging BRNDPM998

References

  1. Boerjan, W., Ralph, J., Baucher, M. Lignin biosynthesis. Annual review of plant biology. 54, 519-546 (2003).
  2. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boerjan, W. Lignin biosynthesis and structure. Plant physiology. 153, 895-905 (2010).
  3. Humphreys, J. M., Chapple, C. Rewriting the lignin roadmap. Current opinion in plant biology. 5, 224-229 (2002).
  4. Adler, E. Lignin chemistry—past, present and future. Wood Sci. Technol. 11, 169-218 (1977).
  5. Brien, T. P., Feder, N., McCully, M. E. Polychromatic Staining of Plant Cell Walls by Toluidine Blue. 59, 368-373 (1964).
  6. Mori, B., Bellani, L. M. Differential staining for cellulosic and modified plant cell walls. Biotechnic & histochemistry: official publication of the Biological Stain Commission. 71, 71-72 (1996).
  7. Maeda, H., Ishida, N. Specificity of binding of hexopyranosyl polysaccharides with fluorescent brightener. Journal of biochemistry. 62, 276-278 (1967).
  8. Wood, P. J. Specificity in the interaction of direct dyes with polysaccharides. Carbohydrate Research. 85, 271-287 (1980).
  9. Hughes, J., McCully, M. E. The use of an optical brightener in the study of plant structure. Stain technology. 50, 319-329 (1975).
  10. Verbelen, J. P., Kerstens, S. Polarization confocal microscopy and congo red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. Journal of microscopy. 198, 101-107 (2000).
  11. Anderson, C. T., Carroll, A., Akhmetova, L., Somerville, C. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant physiology. 152, 787-796 (2010).
  12. Liljegren, S. Phloroglucinol Stain for Lignin. Cold Spring Harbor Protocols. , (2010).
  13. Nakano, J., Meshitsuka, G., lin, S., Dence, C. . The Detection of Lignin Methods in Lignin Chemistry. , (1992).
  14. Sibout, R., et al. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. The Plant cell. 17, 2059-2076 (2005).
  15. Teather, R. M., Wood, P. J. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and environmental microbiology. 43, 777-780 (1982).
  16. Yeung, E. A beginner’s guide to the study of plant structure. Proceedings of the 19th Workshop/Conference of the Association for Biology Laboratory Education (ABLE. 19, 365-36 (1998).
  17. Turner, S. R., Somerville, C. R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall). The Plant Cell Online. 9, 689-701 (1997).
  18. Iiyama, K., Pant, R. The mechanism of the Mäule colour reaction. Introduction of methylated syringyl nuclei into softwood lignin. Wood Sci. Technol. 22, 167-175 (1988).
  19. Yang, F., et al. Engineering secondary cell wall deposition in plants. Plant biotechnology journal. 11, 325-335 (2013).
  20. Zhong, R., Ripperger, A., Ye, Z. H. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants. Plant physiology. 123, 59-70 (2000).
  21. Chapple, C. C., Vogt, T., Ellis, B. E., Somerville, C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. The Plant cell. 4, 1413-1424 (1992).
  22. Fagard, M., et al. PROCUSTE1 Encodes a Cellulose Synthase Required for Normal Cell Elongation Specifically in Roots and Dark-Grown Hypocotyls of Arabidopsis. The Plant Cell Online. 12, 2409-2423 (2000).
check_url/51381?article_type=t

Play Video

Cite This Article
Pradhan Mitra, P., Loqué, D. Histochemical Staining of Arabidopsis thaliana Secondary Cell Wall Elements. J. Vis. Exp. (87), e51381, doi:10.3791/51381 (2014).

View Video