Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

Méthodes de caractérisation de la Co-développement de biofilms et Habitat Hétérogénéité

doi: 10.3791/52602 Published: March 11, 2015

Abstract

Les biofilms sont des communautés microbiennes attachée surface qui ont des structures complexes et produisent hétérogénéités spatiales importantes. le développement du biofilm est fortement réglementé par le flux environnante et l'environnement nutritionnel. la croissance du biofilm augmente également l'hétérogénéité du microenvironnement local en générant des champs d'écoulement complexes et des structures de transport de solutés. Pour étudier le développement de l'hétérogénéité dans les biofilms et les interactions entre les biofilms et leur micro-habitat local, nous avons grandi biofilms mono-espèces de Pseudomonas aeruginosa et les biofilms double-espèces de P. aeruginosa et Escherichia coli sous gradients nutritionnels dans une cellule d'écoulement microfluidique. Nous fournissons des protocoles détaillés pour la création de gradients de nutriments dans la cellule d'écoulement et pour la culture et la visualisation de développement du biofilm dans ces conditions. Nous avons également des protocoles actuels pour une série de méthodes optiques de quantifier la répartition spatiale de la structure du biofilm, distri circulerbutions sur les biofilms, et le transport de masse autour et à l'intérieur des colonies de biofilm. Ces méthodes prennent en charge des enquêtes approfondies de la co-développement du biofilm et l'habitat hétérogénéité.

Materials

Name Company Catalog Number Comments
Peristaltic Pump Gilson Miniplus 3 Flow cell setup and inoculation
Pump Tubing 0.50 mm OVC, Orange/Yellow Gilson F117934 Flow cell setup and inoculation
Three-way Stopcock w/ Swivel Male Luer lock Smiths Medical  MX9311L Flow cell setup and inoculation
Sylgard 184 Solar Cell Encapsulation for Making Solar Panels ML Solar LLC Flow cell setup and inoculation
Pyrex Medium Bottle, 1 L, GL45 VWR 16157-191 Flow cell setup and inoculation
C-FLEX Tubing Cole-Parmer 06422-02 Flow cell setup and inoculation
1 ml TB Syringe BD 309659 Flow cell setup and inoculation
Polymer Tubing IDEX 1520G Flow cell setup and inoculation
Sterile Intramedic Luer Stub Adapter Clay Adams 427564 Flow cell setup and inoculation
PrecisionGlide Needle BD 305195 Flow cell setup and inoculation
Spectrophotometer HACH Flow cell setup and inoculation
Syringe filters - sterile (0.2 μm) Fisherbrand 09-719A Flow cell setup and inoculation
MAXQ Shaker Thermo Scientific Flow cell setup and inoculation
Ammonium sulfate Sigma Aldrich A4418 Growth media
Sodium phosphate dibasic anhydrous Sigma Aldrich RES20908-A7 Growth media
Monobasic potassium phosphate Sigma Aldrich P5655 Growth media
Sodium chloride Sigma Aldrich S7653 Growth media
Magnisium chloride Sigma Aldrich M8266 Growth media
Calcium chloride Sigma Aldrich C5670 Growth media
Calcium sulfate dihydrate Sigma Aldrich C3771 Growth media
Iron(II) sulfate heptahydrate Sigma Aldrich 215422 Growth media
Manganese(II) sulfate monohydrate Sigma Aldrich M7634 Growth media
Copper(II) sulfate Sigma Aldrich 451657 Growth media
Zinc sulfate heptahydrate Sigma Aldrich Z0251 Growth media
Cobalt(II) sulfate heptahydrate Sigma Aldrich C6768 Growth media
Sodium molybdate Sigma Aldrich 243655 Growth media
Boric acid Sigma Aldrich B6768 Growth media
Dextrose Sigma Aldrich D9434 Growth media
Luria Bertani Broth Sigma Aldrich L3022 Growth media
TCS SP2 Confocal Microscopy Leica Fluorescent imaging
SYTO 62 Life Technology S11344 Fluorescent imaging
Cy5 GE Healthcare Life Sciences PA15100 Fluorescent imaging
Red Fluorescent (580/605) FluoSphere Life Technology F-8801 Fluorescent imaging
BioSPA Packman Lab Image Processing
ImageJ NIH Image Processing
Volocity PerkinElmer Image Processing
Streams 2.02 University of Cantebury Image Processing

DOWNLOAD MATERIALS LIST

References

  1. Hall-Stoodley, L., Costerton, J. W., Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol. 2, (2), 95-108 (2004).
  2. Stewart, P. S., Franklin, M. J. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 6, (3), 199-210 (2008).
  3. Xu, K. D., Stewart, P. S., Xia, F., Huang, C. T., McFeters, G. A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microb. 64, (10), 4035-4039 (1998).
  4. Costerton, J. W., et al. Bacterial Biofilms in Nature and Disease. Annu Rev Microbiol. 41, 435-464 (1987).
  5. Battin, T. J., Kaplan, L. A., Newbold, J. D., Hansen, C. M. E. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature. 426, (6965), 439-442 (2003).
  6. Costerton, J. W., Stewart, P. S., Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science. 284, (5418), 1318-1322 (1999).
  7. Stoodley, P., Dodds, I., Boyle, J. D., Lappin-Scott, H. M. Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol. 85, Suppl 1. 19S-28S (1999).
  8. Stoodley, P., Lewandowski, Z., Boyle, J. D., Lappin-Scott, H. M. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: An in situ investigation of biofilm rheology. Biotechnol Bioeng. 65, (1), 83-92 (1999).
  9. Wasche, S., Horn, H., Hempel, D. C. Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. Water Res. 36, (19), 4775-4784 (2002).
  10. Stewart, P. S. Mini-review: Convection around biofilms. Biofouling: The Journal of Bioadhesion and Biofilm Research. 28, (2), 187-198 (2012).
  11. Flemming, H. C. Sorption sites in biofilms. Water Sci Technol. 32, (8), 27-33 (1995).
  12. Debeer, D., Stoodley, P., Lewandowski, Z. Liquid Flow in Heterogeneous Biofilms. Biotechnol Bioeng. 44, (5), 636-641 (1994).
  13. Schultz, M. P., Swain, G. W. The effect of biofilms on turbulent boundary layers. J Fluid Eng-T Asme. 121, (1), 44-51 (1999).
  14. Song, J. S. L., Au, K. H., Huynh, K. T., Packman, A. I. Biofilm Responses to Smooth Flow Fields and Chemical Gradients in Novel Microfluidic Flow Cells. Biotechnol Bioeng. 111, (3), 597-607 (2014).
  15. Shrout, J. D., et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol. 62, (5), 1264-1277 (2006).
  16. Maxworthy, T., Nokes, R. I. Experiments on gravity currents propagating down slopes. Part 1. The release of a fixed volume of heavy fluid from an enclosed lock into an open channel. J Fluid Mech. 584, 433-453 (2007).
  17. Stewart, P. S. A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms. Biotechnol Bioeng. 59, (3), 261-272 (1998).
  18. Schramm, A., De Beer, D., Gieseke, A., Amann, R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ Microbiol. 2, (6), 680-686 (2000).
  19. Santegoeds, C. M., Schramm, A., de Beer, D. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation. 9, (3-4), 159-168 (1998).
  20. Debeer, D., Stoodley, P., Roe, F., Lewandowski, Z. Effects of Biofilm Structures on Oxygen Distribution and Mass-Transport. Biotechnol Bioeng. 43, (11), 1131-1138 (1994).
  21. Liu, Y., Tay, J. H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 36, (7), 1653-1665 (2002).
  22. Zhang, W., et al. A Novel Planar Flow Cell for Studies of Biofilm Heterogeneity and Flow-Biofilm Interactions. Biotechnol Bioeng. 108, (11), 2571-2582 (2011).
  23. Tseng, B. S., et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol. 15, (10), 2865-2878 (2013).
  24. Debeer, D., Srinivasan, R., Stewart, P. S. Direct Measurement of Chlorine Penetration into Biofilms during Disinfection. Appl Environ Microb. 60, (12), 4339-4344 (1994).
Méthodes de caractérisation de la Co-développement de biofilms et Habitat Hétérogénéité
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Li, X., Song, J. L., Culotti, A., Zhang, W., Chopp, D. L., Lu, N., Packman, A. I. Methods for Characterizing the Co-development of Biofilm and Habitat Heterogeneity. J. Vis. Exp. (97), e52602, doi:10.3791/52602 (2015).More

Li, X., Song, J. L., Culotti, A., Zhang, W., Chopp, D. L., Lu, N., Packman, A. I. Methods for Characterizing the Co-development of Biofilm and Habitat Heterogeneity. J. Vis. Exp. (97), e52602, doi:10.3791/52602 (2015).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter