Summary

Imaging- og flowcytometrisystemer basert analyse av Cell Plasser og cellesyklus i 3D melanom Spheroids

Published: December 28, 2015
doi:

Summary

We describe two complementary methods using the fluorescence ubiquitination cell cycle indicator (FUCCI) and image analysis or flow cytometry to identify and isolate cells in the inner G1 arrested and outer proliferating regions of 3D spheroids.

Abstract

Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.

Introduction

Flercellet 3D-kuler har vært kjent som et tumormodell i flere tiår, men det er bare nylig at de er kommet inn i mer vanlig bruk som en in vitro modell for mange faste cancere. De blir i økende grad brukt i high-throughput legemiddel skjermer som et mellomledd mellom komplisert, dyrt og tidkrevende in vivo-modeller og enkel, rimelig 2D enkeltlag modell 1-6. Studier i 2D kultur er ofte ikke i stand til å bli replikert in vivo. Sfæroide modeller av mange typer av cancer er i stand til å etterligne vekstegenskaper, medikamentsensitivitet, medikamentpenetrering, celle-celle-interaksjoner, begrenset tilgjengelighet av oksygen og næringsstoffer, og utvikling av nekrose som sees in vivo i faste tumorer 6-11. Sfæroider utvikle en nekrotisk kjerne, en stillestående eller G1 arrestert region som omgir kjernen, og prolifererende celler i periferien av den sfæroide 7. Utviklingen av disse regionenekan variere avhengig av celletetthet, proliferasjon hastighet og størrelsen av den sfæroide 12. Det er blitt antatt at den cellulære heterogenitet sett i disse forskjellige sub-regioner kan bidra til cancerterapi motstand 13,14. Derfor er evnen til å analysere cellene i disse regionene er separat avgjørende for forståelsen tumormedikamentresponser.

Fluorescensen ubiquitinering cellesyklus-indikator (FUCCI) Systemet er basert på den røde (Kusabira Orange – KO) og grønn (Azami Green – AG) fluorescerende merking av Cdt1 og geminin, som er nedbrutt i ulike faser av cellesyklusen 15. Dermed cellekjerner blir røde på G1, gult tidlig i S og grønt i S / G2 / M-fasen. Vi beskriver her to komplementære metoder både ved hjelp FUCCI for å identifisere cellesyklus, sammen med bruk av bilde programvare eller et fargestoff diffusjon strømningscytometri-analyse for å bestemme hvorvidt celler ligge i G1 arrestert senteret eller den ytre proliferating ringen, og avstanden av individuelle celler fra kanten av den sfæroide. Disse fremgangsmåter ble utviklet i vårt tidligere publikasjon, hvor Vi viste at melanomceller i hypoksiske områder i sentrum av den sfæroide eller / og i nærvær av målrettede terapier er i stand til å forbli i G1 arrest i lengre perioder, og kan re- gå inn i cellesyklusen når mer gunstige forhold oppstår 7.

Protocol

1. FUCCI Transduksjon og Cell Culture FUCCI transduksjon Lag cellelinjer stabilt uttrykker den FUCCI konstruerer mKO2-hCdt1 (30-120) og MAG-hGem (1-100) 15 bruker lentivirus co-transduksjon som tidligere beskrevet 7. Merk: FUCCI Systemet er nå kommersielt tilgjengelig. Generere sub-kloner med lyse fluorescens av encellede sortering. Sort enkle celler som var positive for både AG og KO (gul) ved fluorescensaktivert cellesortering inn i en 96-brønns plate som t…

Representative Results

Det finnes flere metoder for fremstilling av tumor sfæroider, denne protokollen bruker den ikke-heftende vekstmetode, hvor cellene er dyrket på agar eller agarose 3,7,9. Figur 1 viser et eksempel på et C8161 melanom sfæroide etter 3 dager på agar. C8161 kuler danner vanlig størrelse kuler med en diameter på 500 – 600 mikrometer (gjennomsnitt = 565, SD = 19, n = 3) etter 3 døgn. Andre melanoma cellelinjer som vil danne kuler inkluderer: WM793, WM983C, WM983B, WM164, 1205lu (sfæroidene…

Discussion

Semi-automatisert bildeanalyse identifiserte spheroid indre G1 arrestert region, og voksende ytre lag. Denne fremgangsmåten kan brukes på levende sfæroider ved hjelp av en optisk del, eller i faste sfæroide seksjoner, for å identifisere endringer i ikke bare cellesyklusen, men da uttrykket (via immunofluorescens), celledød, eller cellemorfologi i disse forskjellige områder. Cellemotilitet innenfor ulike sfæroide områder kan også kvantifiseres – hvis levende konfokal tidsforløp avbildning sammen med en cellesp…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Ms. Danae Sharp and Ms. Sheena Daignault for technical assistance. We thank Dr. Atsushi Miyawaki, RIKEN, Wako-city, Japan, for providing the FUCCI constructs, Dr. Meenhard Herlyn and Ms. Patricia Brafford, The Wistar Institute, Philadelphia, for providing cell lines, the Imaging and Flow Cytometry Facility at the Centenary Institute for outstanding technical support. We thank Mr. Chris Johnson and Dr. Andrew Barlow for Volocity software technical support. N.K.H. is a Cameron fellow of the Melanoma and Skin Cancer Research Institute, Australia. K.A.B. is a fellow of the Cancer Institute New South Wales (13/ECF/1-39). W.W. is a fellow of the Cancer Institute New South Wales (11/CDF/3-39). This work was supported by project grants RG 09-08 and RG 13-06 (Cancer Council New South Wales), 570778 and 1051996 (Priority-driven collaborative cancer research scheme/Cancer Australia/Cure Cancer Australia Foundation), 08/RFG/1-27 (Cancer Institute New South Wales), and APP1003637 and APP1084893 (National Health and Medical Research Council).

Materials

Hoechst 33342 Life Technologies H3570
agarose low melting point Life Technologies 16520-050 For sectioning
noble agar  Sigma A5431 For making spheroids
agarose for spheroids Fisher Scientific BP1356-100 For making spheroids
0.05% trypsin/EDTA Life Technologies 25300-054
HBSS Life Technologies 14175-103
10% formalin Sigma HT5014-1CS CAUTION: Harmful, corrosive. Use Personal Protective Equipment, do  not breath fumes (open in a fume cupboard).
live/dead near IR Life Technologies L10119
vibratome Technical Products International, Inc
coulture cup Thermo-Fisher Scientific SIE936 Mold for sectioning spheroids
hemocytometer Sigma Z359629
96-well tissue culture plate Invitro FAL353072
collagenase Sigma C5138 
confocal microscope Leica TCS SP5
Flow cytometer analyser Becton Dickinson LSRFortessa
volocity PerkinElmer Imaging software
flowjo Tree Star Flow cytometry software
Vaccuum grease Sigma Z273554
Mounting media Vector Laboratories H1000
FUCCI (commercial constructs) Life Technologies P36238 Transient transfection only
Cell strainer 70 um In Vitro FAL352350
Round bottom 5 mL tubes (sterile) In Vitro FAL352003
Round bottom 5 mL tubes (non-sterile) In Vitro FAL352008

References

  1. LaBarbera, D. V., Reid, B. G., Yoo, B. H. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert opinion on drug discovery. 7, 819-830 (2012).
  2. Beaumont, K. A., Mohana-Kumaran, N., Haass, N. K. Modeling Melanoma In Vitro and In Vivo. Healthcare. 2, 27-46 (2014).
  3. Smalley, K. S., Lioni, M., Noma, K., Haass, N. K., Herlyn, M. In vitro three-dimensional tumor microenvironment models for anticancer drug discovery. Expert opinion on drug discovery. 3, 1-10 (2008).
  4. Reid, B. G., et al. Live multicellular tumor spheroid models for high-content imaging and screening in cancer drug discovery. Current chemical genomics and translational medicine. 8, 27-35 (2014).
  5. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F., Ebner, R. The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. Journal of biomolecular screening. 9, 273-285 (2004).
  6. Hirschhaeuser, F., et al. Multicellular tumor spheroids: an underestimated tool is catching up again. Journal of biotechnology. 148, 3-15 (2010).
  7. Haass, N. K., et al. Real-time cell cycle imaging during melanoma growth, invasion, and drug response. Pigment cell & melanoma research. 27, 764-776 (2014).
  8. Lucas, K. M., et al. Modulation of NOXA and MCL-1 as a strategy for sensitizing melanoma cells to the BH3-mimetic ABT-737. Clinical cancer research : an official journal of the American Association for Cancer Research. 18, 783-795 (2012).
  9. Smalley, K. S., et al. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Molecular cancer therapeutics. 5, 1136-1144 (2006).
  10. Thoma, C. R., Zimmermann, M., Agarkova, I., Kelm, J. M., Krek, W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Advanced drug delivery reviews. 69-70, 29-41 (2014).
  11. Santini, M. T., Rainaldi, G. Three-dimensional spheroid model in tumor biology. Pathobiology : journal of immunopathology, molecular and cellular biology. 67, 148-157 (1999).
  12. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 240, 177-184 (1988).
  13. Haass, N. K. Dynamic tumour heterogeneity in melanoma therapy: how do we address this in a novel model system?. Melanoma Manag. 2, 93-95 (2015).
  14. Desoize, B., Jardillier, J. Multicellular resistance: a paradigm for clinical resistance. Critical reviews in oncology/hematology. 36, 193-207 (2000).
  15. Sakaue-Sawano, A., et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 132, 487-498 (2008).
  16. Basu, S., Campbell, H. M., Dittel, B. N., Ray, A. Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of visualized experiments : JoVE. , (2010).
  17. Smalley, K. S., et al. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. The American journal of pathology. 166, 1541-1554 (2005).
  18. Wang, Q., et al. Targeting glutamine transport to suppress melanoma cell growth. International journal of cancer. Journal international du cancer. 135, 1060-1071 (2014).
  19. Lorenzo, C., et al. Live cell division dynamics monitoring in 3D large spheroid tumor models using light sheet microscopy. Cell division. 6, 22 (2011).
  20. Pampaloni, F., Ansari, N., Stelzer, E. H. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell and tissue research. 352, 161-177 (2013).
  21. Durand, R. E. Use of Hoechst 33342 for cell selection from multicell systems. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society. 30, 117-122 (1982).
  22. Laurent, J., et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC cancer. 13, 73 (2013).
  23. LaRue, K. E., Khalil, M., Freyer, J. P. Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer research. 64, 1621-1631 (2004).
  24. Kyle, A. H., Huxham, L. A., Baker, J. H., Burston, H. E., Minchinton, A. I. Tumor distribution of bromodeoxyuridine-labeled cells is strongly dose dependent. Cancer research. 63, 5707-5711 (2003).
  25. Minchinton, A. I., Tannock, I. F. Drug penetration in solid tumours. Nature reviews. Cancer. 6, 583-592 (2006).
  26. Giesbrecht, J. L., Wilson, W. R., Hill, R. P. Radiobiological studies of cells in multicellular spheroids using a sequential trypsinization technique. Radiation research. 86, 368-386 (1981).

Play Video

Cite This Article
Beaumont, K. A., Anfosso, A., Ahmed, F., Weninger, W., Haass, N. K. Imaging- and Flow Cytometry-based Analysis of Cell Position and the Cell Cycle in 3D Melanoma Spheroids. J. Vis. Exp. (106), e53486, doi:10.3791/53486 (2015).

View Video