Summary

阴离子氧化铈纳米粒子催化清除体内植物活性氧的研究

Published: August 26, 2018
doi:

Summary

在这里, 我们提出了一种合成和表征氧化铈纳米粒子 (nanoceria) 的协议, 用于在体内清除活性氧, nanoceria 在植物组织中进行共焦显微成像, 并在体内用共焦显微镜监测 nanoceria ROS 的清除。

Abstract

活性氧 (ROS) 的积累是植物非生物胁迫反应的标志。ROS 在植物中起着双重作用, 在低水平上充当信号分子, 在高水平上破坏分子。在被胁迫的植物中, ROS 的积聚会破坏代谢物、酶、脂类和 DNA, 从而减少植物生长和产量。氧化铈纳米粒子 (nanoceria) 在体内催化清除活性氧的能力为理解和生物工程植物非生物胁迫耐受提供了独特的工具。在这里, 我们提出了一个合成和表征聚 (丙烯酸) 酸涂层 nanoceria (民警) 的协议, 通过叶片渗透与植物界面的纳米微粒, 并监测其分布和 ROS 清除在体内使用共焦显微镜。目前用于操作植物中 ROS 积累的分子工具仅限于模型物种, 需要费力的转化方法。本协议的体内ROS 清除有可能适用于野生类型的植物, 宽叶和叶结构, 如拟南芥

Introduction

氧化铈纳米粒子 (nanoceria) 广泛应用于生物, 从基础研究到生物工程, 由于其独特的催化活性氧 (ROS) 清除能力1,2,3。Nanoceria 有 ROS 清除能力由于大量表面氧气空缺交替在二氧化状态 (ce3 +和 Ce4 +) 4,5,6。Ce3 +悬垂键有效地清除 ROS, 而纳米晶格菌株通过氧化还原循环反应7促进这些缺陷部位的再生。Nanoceria 最近也被用于研究和工程植物功能8,9。非生物胁迫下的植物积累了 ROS, 对脂质、蛋白质和 DNA 造成氧化损伤10。在 nanoceria 植物中, 在体内活性氧的催化清除能高光、高温和冷应力下改善植物光合作用8。nanoceria 对土壤的施用也增加了小麦的生物质量和籽粒产量11;nanoceria 处理的油菜 (甘蓝) 植株在盐胁迫下具有较高的植物生物量12

Nanoceria 提供生物工程师和植物生物学家一个基于纳米技术的工具, 以了解非生物胁迫反应和提高植物非生物胁迫耐受性。Nanoceria 的体内活性氧清除能力是独立于植物物种, 并在植物组织的简便交付有潜力, 使广泛应用外的模型有机体。不像其他基于基因的方法, nanoceria 不需要产生植物线与抗氧化酶的过度表达, 以提高 ROS 清除能力13。nanoceria 对植物的叶片浸润是实验室研究的一种实用方法。

本议定书的总目标是描述 1) 带负电荷的聚 (丙烯酸) 酸 nanoceria (民警) 的合成和表征, 2) 在整个叶细胞内提供和跟踪全国民警, 3) 监测在体内。本协议合成了带负电荷的聚丙烯酸 (nanoceria) 酸 (民警), 并以其吸收谱、流体力学直径和泽塔电位为特征。我们描述了一种简单的叶片入渗方法, 以提供民警到植物叶组织。在体外显像的纳米颗粒在叶肉细胞中的分布, 用荧光染料 (DiI) 标记民警 (DiI), 并通过共焦荧光显微镜观察纳米粒子。最后, 我们解释如何通过共聚焦显微镜监测体内的ROS 清除。

Protocol

1. 种植芥的植物 在5厘米 x 5 厘米的一次性花盆中播种一个.把32这些花盆放入一个装满水的塑料托盘 (0.5 厘米深), 把塑料托盘和植物转移到植物生长室。 设置生长室设置如下: 200 µmol/ms 光合活性辐射 (PAR), 24 1 °c 日和 21 @ 1 °c 夜, 60% 湿度, 14/10 h 天/夜光政权分别。 在一周的发芽之后, 每壶都要细细地留下一株。注意保持每个花盆中大小相同的幼苗。 <…

Representative Results

民警的合成和表征.民警的合成、纯化和特点遵循了议定书第2节所述方法。图 1A显示了硝酸铈、临机局、硝酸铈和临机局的混合物和民警的溶液的着色。在合成了民警后, 从白色到浅黄色的颜色变化是可见的。用 10 kDa 过滤器纯化后, 民警的特征是紫外-可见光分光光度计。在 271 nm (图 1</st…

Discussion

在本协议中, 我们描述了在植物叶肉细胞内的纳米粒子的合成、表征、荧光染料标记和共焦成像, 以展示其体内活性氧清除活性。从硝酸铈的混合物和氢氧化铵中的临机溶液中合成了民警。民警的特点是吸收 spectrophotomery 和浓度确定使用啤酒 Lamberts 法。泽塔电位测量证实了民警的负电荷表面, 以增强对叶绿体8的传递。用荧光 DiI 染料对民警进行标记,叶片叶肉细胞?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了加利福尼亚大学、河畔分校和美国农业部食品与农业研究所的支持, 孵化项目 1009710 J.P.G.。该材料的基础是国家科学基金会根据1817363号赠款资助的 J.P.G. 的工作。

Materials

Cerium (III) nitrate hexahydrate Sigma-Aldrich 238538-100G
Molecular Biology Grade Water, Corning VWR 45001-044 
Falcon 50 mL Conical Centrifuge Tubes VWR 14-959-49A
Poly (acrylic acid) 1,800 Mw Sigma-Aldrich 323667-100G
Fisherbrand Digital Vortex Mixer Fisher Scientific 02-215-370
Fisherbrand Digital Vortex Mixer Accessory, Insert Retainer Fisher Scientific 02-215-391
Fisherbrand Digital Vortex Mixer Accessories: Foam Insert Set Fisher Scientific 02-215-395
Ammonium hydroxide solution Sigma-Aldrich 05002-1L
PYREX Griffin Beakers, Graduated, Corning VWR 13912-149 
RCT basic IKA 3810001
Eppendorf Microcentrifuge 5424 VWR 80094-126
Amicon Ultra-15 Centrifugal Filter Units Millipore-Sigma UFC901024
Allegra X-30 Series Benchtop Centrifuge Beckman Coulter B06314
UV-2600 Sptecrophotometer Shimadzu UV-2600 120V
Whatman Anotop 10 syringe filter Sigma-Aldrich WHA68091102
BD Disposable Syringes with Luer-Lok Tips Fisher Scientific 14-829-45
Zetasizer Nano S Malvern Panalytical Zen 1600
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate Sigma-Aldrich 42364-100MG
Dimethyl Sulfoxide, ACS VWR BDH1115-1LP
Sunshine Mix #1 LC1 Green Island Distributors, Inc 5212601.CFL080P
Adaptis 1000 Conviron A1000
TES, >99% (titration Sigma-Aldrich T1375-100G
Magnesium chloride Sigma-Aldrich M8266-1KG
Air-Tite All-Plastic Norm-Ject Syringe Fisher Scientific 14-817-25
Kimberly-Clark Professional Kimtech Science Kimwipes Delicate Task Wipers Fisher Scientific 06-666A
Carolina Observation Gel Carolina 132700
Corning microscope slides, frosted one side, one end Sigma-Aldrich CLS294875X25-72EA
Cork Borer Sets with Handles Fisher Scientific S50166A
Perfluorodecalin Sigma-Aldrich P9900-25G
Micro Cover Glasses, Square, No. 1 VWR 48366-045
Leica Laser Scanning Confocal Microscope TCS SP5 Leica Microsystems TCS SP5
2′,7′-Dichlorofluorescin diacetate Sigma-Aldrich D6883-250MG
Dihydroethidium Sigma-Aldrich D7008-10MG
Fisherbrand Premium Microcentrifuge Tubes: 1.5 mL Fisher Scientific 05-408-129
Eppendorf Uvette cuvettes Sigma-Aldrich Z605050-80EA
Chlorophyll meter  Konica Minolta SPAD-502

References

  1. Xu, C., Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials. 6 (3), 90-116 (2014).
  2. Nelson, B., Johnson, M., Walker, M., Riley, K., Sims, C. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants. 5 (2), 15 (2016).
  3. Gupta, A., Das, S., Neal, C. J., Seal, S. Controlling the surface chemistry of cerium oxide nanoparticles for biological applications. Journal of Materials Chemistry B. 4 (19), 3195-3202 (2016).
  4. Walkey, C., et al. Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ. Sci.: Nano. 2 (1), 33-53 (2015).
  5. Pulido-Reyes, G., et al. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Scientific reports. 5, 15613 (2015).
  6. Dutta, P., et al. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chemistry of Materials. 18 (21), 5144-5146 (2006).
  7. Boghossian, A. A., et al. Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Advanced Energy Materials. 3, 881-893 (2013).
  8. Wu, H., Tito, N., Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano. 11 (11), 11283-11297 (2017).
  9. Giraldo, J. P., et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials. 13 (4), 400-408 (2014).
  10. Demidchik, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany. 109, 212-228 (2015).
  11. Rico, C. M., et al. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of Agricultural and Food Chemistry. 62 (40), 9669-9675 (2014).
  12. Rossi, L., Zhang, W., Lombardini, L., Ma, X. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution. 219, 28-36 (2016).
  13. Xu, J., Duan, X., Yang, J., Beeching, J. R., Zhang, P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology. 161 (3), 1517-1528 (2013).
  14. Wu, H., et al. Developing and validating a high-throughput assay for salinity tissue tolerance in wheat and barley. Planta. , (2015).
  15. Pirmohamed, T., et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical communications. 46 (16), 2736-2738 (2010).
  16. Asati, A., Santra, S., Kaittanis, C., Perez, J. M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS nano. 4, 5321-5331 (2010).
  17. Li, J., Wu, H., Santana, I., Fahlgren, M., Giraldo, J. P. Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe. ACS Applied Materials & Interfaces. , (2018).
  18. Wu, H., Shabala, L., Shabala, S., Giraldo, J. P. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano. 5 (7), 1567-1583 (2018).
  19. Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saillé, C., Ceballos-Picot, I. Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: Relevance to Parkinson’s disease. Biochemical Pharmacology. 56 (5), 645-655 (1998).
  20. Zhao, H., et al. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proceedings of the National Academy of Sciences. 102 (16), 5727-5732 (2005).
  21. Sun, C., Li, H., Chen, L. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy & Environmental Science. 5 (9), 8475 (2012).
  22. Hirano, M., Inagaki, M. Preparation of monodispersed cerium(iv) oxide particles by thermal hydrolysis: influence of the presence of urea and Gd doping on their morphology and growth. Journal of Materials Chemistry. 10 (2), 473-477 (2000).
  23. Xi, D. M., Liu, W. S., Yang, G. D., Wu, C. A., Zheng, C. C. Seed-specific overexpression of antioxidant genes in Arabidopsis enhances oxidative stress tolerance during germination and early seedling growth. Plant Biotechnology Journal. 8 (7), 796-806 (2010).
  24. Wu, H., Santana, I., Dansie, J., Vivo Giraldo, J. P. In Vivo delivery of nanoparticles into plant leaves. Current Protocols in Chemical Biology. 9 (4), 269-284 (2017).
  25. Fukushima, K., Hasebe, M. Adaxial-abaxial polarity: The developmental basis of leaf shape diversity. Genesis. 52 (1), 1-18 (2014).
  26. Monda, K., et al. Enhanced stomatal conductance by a spontaneous Arabidopsis tetraploid, Me-o, results from increased stomatal size and greater stomatal aperture. Plant physiology. 170 (3), 1435-1444 (2016).
  27. Petrov, V., Hille, J., Mueller-Roeber, B., Gechev, T. S. ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science. 6, 1-16 (2015).
  28. Chaves, M. M., Flexas, J., Pinheiro, C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany. 103 (4), 551-560 (2009).

Play Video

Cite This Article
Newkirk, G. M., Wu, H., Santana, I., Giraldo, J. P. Catalytic Scavenging of Plant Reactive Oxygen Species In Vivo by Anionic Cerium Oxide Nanoparticles. J. Vis. Exp. (138), e58373, doi:10.3791/58373 (2018).

View Video