Summary

Bedömning av minnesfunktion i Pilocarpin-inducerade epileptiska möss

Published: June 04, 2020
doi:

Summary

Denna artikel presenterar experimentella förfaranden för att bedöma minnesförsämringar i pilocarpin-inducerad epileptiska möss. Detta protokoll kan användas för att studera patofysiologiska mekanismer av epilepsi-associerade kognitiv försämring, som är en av de vanligaste samsjuklighet i epilepsi.

Abstract

Kognitiv svikt är en av de vanligaste samsjukligheterna i temporallobepilepsi. För att sammanfatta epilepsi-associerade kognitiv försämring i en djurmodell av epilepsi genererade vi pilocarpin-behandlade kroniska epileptiska möss. Vi presenterar ett protokoll för tre olika beteendetester med hjälp av dessa epileptiska möss: nya objekt plats (NL), nya objekt erkännande (NO) och mönster separation (PS) tester för att utvärdera inlärning och minne för platser, objekt och sammanhang, respektive. Vi förklarar hur du ställer in beteendeapparaten och tillhandahåller experimentella procedurer för NL-, NO- och PS-tester efter ett öppet fälttest som mäter djurens basala rörelseapparat. Vi beskriver också de tekniska fördelarna med NL, NO och PS tester med avseende på andra beteendemässiga tester för bedömning av minnesfunktion i epileptiska möss. Slutligen diskuterar vi möjliga orsaker och lösningar för epileptiska möss som inte gör 30 s god kontakt med objekten under förtrogenhetssessionerna, vilket är ett viktigt steg för framgångsrika minnestester. Således ger detta protokoll detaljerad information om hur man bedömer epilepsi-associerade minnesförsämringar med hjälp av möss. NL- och NO-testerna är enkla, effektiva analyser som är lämpliga för utvärdering av olika typer av minne hos epileptiska möss.

Introduction

Epilepsi är en kronisk sjukdom som kännetecknas av spontana återkommande anfall1,2,3. Eftersom repetitiva anfall kan orsaka strukturella och funktionella avvikelser i hjärnan1,2,3, onormal krampanfall aktivitet kan bidra till kognitiv dysfunktion, som är en av de vanligaste epilepsi-associerade samsjuklighet4,5,6. I motsats till de kroniska anfallshändelserna, som är övergående och tillfälliga, kan kognitiva funktionsnedsättningar kvarstå under epileptiska patienters liv, vilket försämrar deras livskvalitet. Därför är det viktigt att förstå patofysiologiska mekanismerna för epilepsi-associerade kognitiv försämring.

Olika experimentella djurmodeller av epilepsi har använts för att visa inlärnings- och minnesunderskott i samband med kronisk epilepsi7,,8,9,10,11,12. Till exempel, Morris vatten labyrint, kontextuell rädsla konditionering, hål-board, nya objekt plats (NL), och nya objekt erkännande (NO) tester har ofta använts för att bedöma minne dysfunktion i temporalloben epilepsi (TLE). Eftersom hippocampus är en av de primära regioner där TLE visar patologi, beteendetester som kan utvärdera hippocampus-beroende minnesfunktion är ofta företrädesvis utvalda. Men med tanke på att anfall kan inducera avvikande hippocampus neurogenes och bidra till epilepsi-associerade kognitiv försämring10, beteendemässiga paradigm för att testa dentate nyfödda neuronal funktion (dvs. rumsliga mönster separation, PS)8,13 kan också ge värdefull information om cellulära mekanismer för minne nedskrivningar i epilepsi.

I den här artikeln visar vi ett batteri av minnestester, NL, NO och PS, för epileptiska möss. Testerna är enkla och lättillgängliga och kräver inget sofistikerat system.

Protocol

Alla experimentella förfaranden godkändes av den etiska kommittén vid Det katolska universitetet i Korea och genomfördes i enlighet med National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23). 1. Test av nya objektplats (NL) Förbered epileptiska C57BL/6 eller transgena möss 4–6 veckor efter pilokarpinininjektion.OBS: Akuta anfall orsakades av intraperitoneal (IP) pilokarpin injektion, enligt protokollet som beskrivs i v?…

Representative Results

Ett allmänt experimentellt schema och en allmän inställning för utvärdering av kognitiv funktion visas i figur 1. Sex veckor efter införandet av pilokarpininducerade akuta anfall utsattes möss för NL-, NO- och PS-testerna i den ordningen åtskilda av 3 dagars viloperioder mellan testerna (figur 1A). För NL-testet placerades två identiska objekt i det öppna fältet under förtrogenhetssessionen (F1), och nästa dag flyttades ett objekt till en ny plats…

Discussion

Detta arbete beskriver experimentella procedurer för utvärdering av kognitiv funktion hos möss med kronisk epilepsi. Många olika beteendetestparadigmet används för att bedöma inlärnings- och minnesfunktioner hos möss18. Morris vatten labyrint, radiell arm labyrint, Y-labyrint, kontextuell rädsla konditionering, och objekt-baserade tester är de vanligaste beteendetester och ge tillförlitliga resultat. Bland dem, NL, NO, och PS tester är effektiva, enkla metoder för att utvärdera lär…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi tackar dr Jae-Min Lee för hans tekniska stöd. Detta arbete stöddes av National Research Foundation of Korea (NRF) bidrag som finansieras av den koreanska regeringen (NRF-2019R1A2C1003958, NRF-2019K2A9A2A08000167).

Materials

1 ml syringe Sung-shim Use with the 26 or 30 gauge needle
70% Ethanol Duksan UN1170 Spray to clean the box and objects
black curtain For avoiding unnecessary visual cues
Cresyl violet Sigma C5042 For Cresyl violet staining
cryotome Leica E21040041 For tissue sectioning
double-sided sticky tape For the firm placement of the objects
DPX mounting medium Sigma 06522
ethanol series Duksan UN1170 Make 100%, 95%, 90%, 80%, 70% ethanol solutions
floor plate with narrow grid patterns Leehyo-bio Behavioral experiment equipment, plate size: 42.5 x 42.5 x 0.5 cm, grid size: 2.75 x 2.75 cm
floor plate with wide grid patterns Leehyo-bio Behavioral experiment equipment, plate size: 42.5 x 42.5 x 0.5 cm, grid size: 5.5 x 5.5 cm
illuminometer TES Electrical Electronic Corp. 1334A For the measurement of the room lighting (60 Lux)
Intensive care unit Thermocare #W-1
ketamine hydrochloride Yuhan 7003 Use to anesthetize the mouse for transcardial perfusion
LED lamp Lungo P13A-0422-WW-04 Lighting for the behavioral test room
objects Rubber doll, 50 ml plastic tube, glass Coplin jar, plastic T-flask, glass bottle
open field box Leehyo-bio Behavioral experiment equipment, size: 44 x 44 x 31 cm
paper towel Yuhan-Kimberly 47201 Use to dry open field box and objects
paraformaldehyde Merck Millipore 104005 Make 4% solution
pilocarpine hydrochloride Sigma P6503
ruler Use to locate the objects in the open field box
scopolamine methyl nitrate Sigma S2250 Make 10X stock
Smart system 3.0 Panlab Video tracking system
stopwatch Junso JS-307 For the measurement of explorative activities of mice
sucrose Sigma S9378 For cryoprotection of tissue sections
terbutaline hemisulfate salt Sigma T2528 Make 10X stock
video camera (CCD camera) Vision VCE56HQ-12 Place the camera directly overhead of the open field box
xylazine (Rompun) Bayer korea KR10381 Use to anesthetize the mouse for transcardial perfusion
xylene Duksan UN1307 For Cresyl violet staining

References

  1. Chang, B. S., Lowenstein, D. H. Mechanisms of disease – Epilepsy. New England Journal of Medicine. 349 (13), 1257-1266 (2003).
  2. Scharfman, H. E. The neurobiology of epilepsy. Current Neurology and Neuroscience Report. 7 (4), 348-354 (2007).
  3. Rakhade, S. N., Jensen, F. E. Epileptogenesis in the immature brain: emerging mechanisms. Nature Reviews in Neurology. 5 (7), 380-391 (2009).
  4. Breuer, L. E., et al. Cognitive deterioration in adult epilepsy: Does accelerated cognitive ageing exist. Neuroscience and Biobehavior Reviews. 64, 1-11 (2016).
  5. Leeman-Markowski, B. A., Schachter, S. C. Treatment of Cognitive Deficits in Epilepsy. Neurology Clinics. 34 (1), 183-204 (2016).
  6. Helmstaedter, C., Elger, C. E. Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease. Brain. 132, 2822-2830 (2009).
  7. Groticke, I., Hoffmann, K., Loscher, W. Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Experimental Neurology. 207 (2), 329-349 (2007).
  8. Long, Q., et al. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proceedings of the National Academy of Science U. S. A. 114 (17), 3536-3545 (2017).
  9. Lima, I. V. A., et al. Postictal alterations induced by intrahippocampal injection of pilocarpine in C57BL/6 mice. Epilepsy & Behavior. 64, 83-89 (2016).
  10. Cho, K. O., et al. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nature Communication. 6, 6606 (2015).
  11. Zhou, Q., et al. Adenosine A1 Receptors Play an Important Protective Role Against Cognitive Impairment and Long-Term Potentiation Inhibition in a Pentylenetetrazol Mouse Model of Epilepsy. Molecular Neurobiology. 55 (4), 3316-3327 (2018).
  12. Jiang, Y., et al. Ketogenic diet attenuates spatial and item memory impairment in pentylenetetrazol-kindled rats. Brain Research. 1646, 451-458 (2016).
  13. Zhuo, J. M., et al. Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks. Elife. 5, 22429 (2016).
  14. Kim, J. E., Cho, K. O. The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. Journal of Visualized Experiments. (132), e56831 (2018).
  15. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. Journal of Visualized Experiments. (65), e3564 (2012).
  16. Muller, C. J., Groticke, I., Bankstahl, M., Loscher, W. Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Experimental Neurology. 219 (1), 284-297 (2009).
  17. Brandt, C., Gastens, A. M., Sun, M., Hausknecht, M., Loscher, W. Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology. 51 (4), 789-804 (2006).
  18. Wolf, A., Bauer, B., Abner, E. L., Ashkenazy-Frolinger, T., Hartz, A. M. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One. 11 (1), 0147733 (2016).
  19. Lueptow, L. M. Novel Object Recognition Test for the Investigation of Learning and Memory in Mice. Journal of Visualized Experiments. (126), e55718 (2017).
  20. Antunes, M., Biala, G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive Processing. 13 (2), 93-110 (2012).
  21. van Goethem, N. P., van Hagen, B. T. J., Prickaerts, J. Assessing spatial pattern separation in rodents using the object pattern separation task. Nature Protocols. 13 (8), 1763-1792 (2018).
  22. Leger, M., et al. Object recognition test in mice. Nature Protocols. 8 (12), 2531-2537 (2013).
  23. Moscovitch, M., Cabeza, R., Winocur, G., Nadel, L. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. Annual Reviews in Psychology. 67, 105-134 (2016).
  24. Eichenbaum, H. A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience. 1 (1), 41-50 (2000).
  25. Brown, M. W., Aggleton, J. P. Recognition memory: What are the roles of the perirhinal cortex and hippocampus. Nature Reviews Neuroscience. 2 (1), 51-61 (2001).
  26. Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M., Bussey, T. J. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. Journal of Neuroscience. 24 (26), 5901-5908 (2004).
  27. Winters, B. D., Bussey, T. J. Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. Journal of Neuroscience. 25 (1), 52-61 (2005).
  28. Bermudez-Rattoni, F., Okuda, S., Roozendaal, B., McGaugh, J. L. Insular cortex is involved in consolidation of object recognition memory. Learning & Memory. 12 (5), 447-449 (2005).
  29. Akirav, I., Maroun, M. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cerebral Cortex. 16 (12), 1759-1765 (2006).
  30. Cohen, S. J., Stackman, R. W. Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavior Brain Research. 285, 105-117 (2015).
  31. Cohen, S. J., et al. The Rodent Hippocampus Is Essential for Nonspatial Object Memory. Current Biology. 23 (17), 1685-1690 (2013).
  32. Broadbent, N. J., Gaskin, S., Squire, L. R., Clark, R. E. Object recognition memory and the rodent hippocampus. Learning and Memory. 17 (1), 5-11 (2010).
  33. Tuscher, J. J., Taxier, L. R., Fortress, A. M., Frick, K. M. Chemogenetic inactivation of the dorsal hippocampus and medial prefrontal cortex, individually and concurrently, impairs object recognition and spatial memory consolidation in female mice. Neurobiology of Learning and Memory. 156, 103-116 (2018).
  34. de Lima, M. N., Luft, T., Roesler, R., Schroder, N. Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neuroscience Letters. 405 (1-2), 142-146 (2006).
  35. Hammond, R. S., Tull, L. E., Stackman, R. W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiology of Learning and Memory. 82 (1), 26-34 (2004).
  36. Clark, R. E., Zola, S. M., Squire, L. R. Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience. 20 (23), 8853-8860 (2000).
  37. Stackman, R. W., Cohen, S. J., Lora, J. C., Rios, L. M. Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiology of Learning and Memory. 133, 118-128 (2016).
  38. Mumby, D. G., Gaskin, S., Glenn, M. J., Schramek, T. E., Lehmann, H. Hippocampal damage and exploratory preferences in rats: memory for objects, places, and contexts. Learning & Memory. 9 (2), 49-57 (2002).
  39. Jeong, K. H., Lee, K. E., Kim, S. Y., Cho, K. O. Upregulation of Kruppel-Like Factor 6 in the Mouse Hippocampus after Pilocarpine-Induced Status Epilepticus. Neuroscience. 186, 170-178 (2011).
  40. Kim, J. E., Cho, K. O. The Pilocarpine Model of Temporal Lobe Epilepsy and EEG Monitoring Using Radiotelemetry System in Mice. Journal of Visualized Experiments. (132), e56831 (2018).
  41. Jiang, Y., et al. Abnormal hippocampal functional network and related memory impairment in pilocarpine-treated rats. Epilepsia. 59 (9), 1785-1795 (2018).
  42. Wang, L., Liu, Y. H., Huang, Y. G., Chen, L. W. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. Brain Research. 1241, 157-167 (2008).
  43. Detour, J., Schroeder, H., Desor, D., Nehlig, A. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia. 46 (4), 499-508 (2005).
  44. Benini, R., Longo, D., Biagini, G., Avoli, M. Perirhinal Cortex Hyperexcitability in Pilocarpine-Treated Epileptic Rats. Hippocampus. 21 (7), 702-713 (2011).
  45. Yassa, M. A., Stark, C. E. Pattern separation in the hippocampus. Trends in Neurosciences. 34 (10), 515-525 (2011).
  46. Goncalves, J. T., Schafer, S. T., Gage, F. H. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell. 167 (4), 897-914 (2016).
  47. Sahay, A., et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 472 (7344), 466-539 (2011).

Play Video

Cite This Article
Park, K., Kim, J., Choi, I., Cho, K. Assessment of Memory Function in Pilocarpine-induced Epileptic Mice. J. Vis. Exp. (160), e60751, doi:10.3791/60751 (2020).

View Video