Summary

肾动脉狭窄肾素调节的改良双肾单夹小鼠模型

Published: October 26, 2020
doi:

Summary

使用聚氨酯管开发改良的2肾1夹(2K1C)Goldblatt小鼠模型以启动肾动脉狭窄,诱导肾素表达增加和肾损伤。在这里,我们描述了准备袖带并将其置于肾动脉上以产生可重复且一致的2K1C小鼠模型的详细程序。

Abstract

肾动脉狭窄是冠状动脉或外周血管疾病患者的常见病症,其中肾素血管紧张素醛固酮系统(RAAS)过度活化。在这种情况下,肾动脉变窄,刺激肾素(RAAS中的限速蛋白酶)表达和释放的增加。由此产生的肾素表达升高是肾血管性高血压的已知驱动因素,通常与肾损伤和终末器官损伤有关。因此,人们对开发针对这种情况的新疗法非常感兴趣。肾动脉狭窄中肾素控制的分子和细胞机制尚不完全清楚,需要进一步研究。为了诱导小鼠肾动脉狭窄,开发了一种修饰的2肾1夹(2K1C)Goldblatt小鼠模型。野生型小鼠右肾被冷冻,假手术小鼠用作对照。肾动脉狭窄后,我们确定了肾素表达和肾损伤。收获肾脏,并使用新鲜皮质来确定肾素的蛋白质和mRNA表达。该动物模型是可重复的,可用于研究参与肾血管性高血压和肾损伤的病理生理学反应,分子和细胞途径。

Introduction

肾动脉狭窄(RAStenosis)是一种棘手的问题,影响约6%的65岁以上人群和高达40%的冠状动脉或外周血管疾病患者12。目前对这种疾病的治疗是有限的;因此,迫切需要开发新的疗法来治疗肾血管性高血压或由RAStenosis诱导的抵抗性高血压。肾素血管紧张素醛固酮系统(RAAS)是参与RAS狭窄诱导的高血压或肾血管性高血压发病机制的关键途径34。针对 RAAS 的已知疗法(如血管紧张素转换酶抑制剂或血管紧张素受体阻滞剂)可缓解高血压,但需要仔细检查肾衰竭和高钾血症567。肾素催化RAAS中的速率限制步骤;它将血管紧张素原转化为血管紧张素I。在动脉粥样硬化中,斑块形成导致肾动脉变窄,从而驱动肾素分泌,导致肾血管高血压和肾脏损伤8。许多研究报告了人类肾血管性高血压期间氧化应激水平升高,这与两个肾脏一夹(2K1C)小鼠模型以及其他高血压动物模型29,10111213141516证实。.RAS狭窄诱发的肾血管性高血压期间肾素表达控制的分子机制尚不清楚,需要进一步研究。

可靠且可重复地概括RAStenosis的实验动物模型对于阐明肾素表达控制的细胞和分子机制以开发新疗法非常重要。2K1C小鼠模型是研究肾血管性高血压发病机制的成熟实验模型17181920。该模型通过使用夹子1720,21的肾动脉收缩而生成,因此产生肾动脉阻塞,导致肾素表达增加和高血压17192021。然而,没有可用的技术报告,其中描述了在动物模型中产生肾动脉狭窄的分步过程。

传统的U形银夹,聚氨酯管和其他夹子已被用于收缩肾动脉以诱导肾动脉狭窄。一些研究表明,夹子的设计和材料对于获得2K1C动物模型的可靠和可重复数据至关重要。根据Lorenz等人的说法,使用传统的U型设计银夹诱导高血压的成功率较低(40-60%)21。由于夹子设计,肾动脉被横向压压,引发一些收缩和更大的概率从肾动脉中移出。银的延展性和延展性可能允许夹子宽度的变化;因此,在小鼠中引起不同的高血压水平。夹子上的二氧化银可引起血管周围炎症、内膜增殖和组织肉芽形成,改变肾动脉直径22。由于用常规U-design银夹获得的高血压水平的可变性,Warner等人和Lorenz等人已经成功地使用圆形设计的聚氨酯管来启动小鼠的肾动脉狭窄,从而产生更可靠和一致的诱导两肾一夹动物模型2021

在这份报告中,我们描述了一种手术方案,以在小鼠中产生实验性RAStenosis,使用聚氨酯管来收缩肾动脉。聚氨酯圆形设计袖口是一种更具可重复性,可靠性和低成本的夹子,可在小鼠中产生狭窄。该实验模型的目标是研究和定义肾动脉狭窄期间肾素表达控制的分子和细胞机制。我们通过测量肾素表达和肾损伤标志物中性粒细胞明胶酶相关脂质运载蛋白(N-GAL)来确认RAS狭窄小鼠模型的成功。

Protocol

根据美国国立卫生研究院(NIH)指南和美国卫生与公众服务部的范德比尔特大学医学中心(VUMC)动物护理部对小鼠进行饲养和护理。在开始实验之前,所有动物程序都得到了VUMC机构动物护理和使用委员会的批准。 1. 动物准备和解剖 在开始手术前约30分钟打开加热垫的发芽器和水泵。 用锋利的手术刀切割0.5毫米长的聚氨酯管。取下 0.2 毫米的周长,纵向切开,?…

Representative Results

肾动脉收缩增加狭窄肾中的肾素表达,同时抑制对侧肾的表达。狭窄的两个肾一夹(2K1C)或Goldblatt模型诱导肾素表达增加和肾损伤。这被认为是人类单侧肾动脉狭窄的最佳代表性模型。 使用免疫印迹法测量肾素和原脯素(肾素的前体)的表达。数据显示,与对侧肾和假肾相比,狭窄肾中的肾素和原脯素表达增加,表明袖带收缩肾动脉,导致肾灌注改变(图1</s…

Discussion

肾动脉狭窄是继发性或难治性高血压和肾损伤的重要病因129.两个肾脏一夹(2K1C)Goldblatt模型已被用于研究RAS狭窄诱导的肾血管高血压1171819。以前使用各种动物模型的一些研究表明,肾动脉狭窄是肾素过表达和释放的强大刺激因子,肾损伤<sup class=…

Disclosures

The authors have nothing to disclose.

Acknowledgements

研究得到了NHLBI研究科学家发展补助金(1K01HL135461-01)对JAG的支持。感谢大卫·卡莫纳-贝里奥和伊莎贝尔·阿达尔维-伦吉福的技术援助。

Materials

Diet Gel Clear H2O Diet-Gel 76A Surgery recovery diet
EMC Heated Hard pad Hallowell 000A2788B Heating pads were used to keep mice warm
Ethilon Nylon Suture Ethicon 662G 4-0 (1.5 metric), This suture was used to close the peritoneum, and skin
Ethilon Nylon Suture Ethicon 2815 G 8-0 (0.4 metric), This suture was used to close cuff to tie and constrict the artery
Germinator 500 Braintree Scientific Inc. GER 5287 Sterilize surgical tools between surgeries
Ketoprofen Zoetis Ketofen Painkiller
Polyurethane Braintree Scientific Inc. MRE-025 This tube was used to initiate stenosis
Povidone-iodine antiseptic swabsticks Medline MDS093901 It was applied after hair removal and surgery on the skin
Reflex 7 Clip Applier Roboz Surgical Instrument Co 204-1000 This clip applier was used to apply clip in case one or more sutures went off
Sterile towel drapes Dynarex 4410 It was used as a bedsheet for mice during surgery
Triple antibiotic ointment Medi-First 22312
Water pump Stryker T/pump Professionals Used to warm and circulate water in the heating hard pad to keep mice warm during and post-surgery

References

  1. Kashyap, S., et al. Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension. American Journal of Physiology-Renal Physiology. 310 (5), 372-384 (2016).
  2. Wang, W., et al. Changes in inflammatory biomarkers after renal revascularization in atherosclerotic renal artery stenosis. Nephrology Dialysis Transplantation. 31 (9), 1437-1443 (2016).
  3. Yerram, P., Karuparthi, P. R., Chaudhary, K. Pathogenesis and management of renovascular hypertension and ischemic nephropathy. Minerva Urologica e Nefrologica. 64 (1), 63-72 (2012).
  4. Covic, A., Gusbeth-Tatomir, P. The role of the renin-angiotensin-aldosterone system in renal artery stenosis, renovascular hypertension, and ischemic nephropathy: diagnostic implications. Progress in Cardiovascular Diseases. 52 (3), 204-208 (2009).
  5. Barreras, A., Gurk-Turner, C. Angiotensin II receptor blockers. Proceedings. 16 (1), 123-126 (2003).
  6. Sica, D. A. Angiotensin-converting enzyme inhibitors side effects–physiologic and non-physiologic considerations. Journal of Clinical Hypertension. 6 (7), 410-416 (2004).
  7. Hill, R. D., Vaidya, P. N. Angiotensin II Receptor Blockers (ARB, ARb). StatPearls. , (2019).
  8. Durante, A., et al. Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis. Current Pharmaceutical Design. 18 (7), 981-1004 (2012).
  9. Chen, K., et al. Plasma reactive carbonyl species: Potential risk factor for hypertension. Free Radical Research. 45 (5), 568-574 (2011).
  10. Zhang, X., et al. Angiotensin receptor blockade has protective effects on the poststenotic porcine kidney. Kidney International. 84 (4), 767-775 (2013).
  11. Zou, X., et al. Renal scattered tubular-like cells confer protective effects in the stenotic murine kidney mediated by release of extracellular vesicles. Scientific Reports. 8 (1), 1263 (2018).
  12. Kinra, M., Mudgal, J., Arora, D., Nampoothiri, M. An insight into the role of cyclooxygenase and lipooxygenase pathway in renal ischemia. European Review for Medical and Pharmacological Sciences. 21 (21), 5017-5020 (2017).
  13. Cavalcanti, C. O., et al. Inhibition of PDE5 Restores Depressed Baroreflex Sensitivity in Renovascular Hypertensive Rats. Frontiers in Physiology. 7, 15 (2016).
  14. Dias, A. T., et al. Sildenafil ameliorates oxidative stress and DNA damage in the stenotic kidneys in mice with renovascular hypertension. Journal of Translational Medicine. 12, 35 (2014).
  15. Lerman, L. O., Chade, A. R., Sica, V., Napoli, C. Animal models of hypertension: an overview. Journal of Laboratory and Clinical Medicine. 146 (3), 160-173 (2005).
  16. Reckelhoff, J. F., Romero, D. G., Yanes Cardozo, L. L. Sex, Oxidative Stress, and Hypertension: Insights From Animal Models. Physiology (Bethesda). 34 (3), 178-188 (2019).
  17. Goldblatt, H., Lynch, J., Hanzal, R. F., Summerville, W. W. Studies on Experimental Hypertension : I. The Production of Persistent Elevation of Systolic Blood Pressure by Means of Renal Ischemia. Journal of Experimental Medicine. 59 (3), 347-379 (1934).
  18. Gollan, F., Richardson, E., Goldblatt, H. Hypertension in the systemic blood of animals with experimental renal hypertension. Journal of Experimental Medicine. 88 (4), 389-400 (1948).
  19. Lewis, H. A., Goldblatt, H. Studies on Experimental Hypertension: XVIII. Experimental Observations on the Humoral Mechanism of Hypertension. Bulletin of the New York Academy of Medicine. 18 (7), 459-487 (1942).
  20. Warner, G. M., et al. Genetic deficiency of Smad3 protects the kidneys from atrophy and interstitial fibrosis in 2K1C hypertension. American Journal of Physiology-Renal Physiology. 302 (11), 1455-1464 (2012).
  21. Lorenz, J. N., et al. Renovascular hypertension using a modified two-kidney, one-clip approach in mice is not dependent on the alpha1 or alpha2 Na-K-ATPase ouabain-binding site. American Journal of Physiology-Renal Physiology. 301 (3), 615-621 (2011).
  22. Ebina, K., Iwabuchi, T., Suzuki, S. Histological change in permanently clipped or ligated cerebral arterial wall. Part II: Autopsy cases of aneurysmal neck clipping. Acta Neurochirurgica. 66 (1-2), 23-42 (1982).
  23. Saleem, M., et al. Sox6: A new modulator of renin expression during physiological conditions. bioRxiv. , (2019).
  24. Saleem, M., et al. Sox6 as a new modulator of renin expression in the kidney. American Journal of Physiology-Renal Physiology. , (2019).
  25. Chade, A. R., Williams, M. L., Engel, J., Guise, E., Harvey, T. W. A translational model of chronic kidney disease in swine. American Journal of Physiology-Renal Physiology. 315 (2), 364-373 (2018).
  26. Xue, Y., Xu, Z., Chen, H., Gan, W., Chong, T. Low-energy shock wave preconditioning reduces renal ischemic reperfusion injury caused by renal artery occlusion. Acta Cirúrgica Brasileira. 32 (7), 550-558 (2017).
  27. Lalanne, A., Beaudeux, J. L., Bernard, M. A. NGAL: a biomarker of acute and chronic renal dysfunction. Annales de Biologie Clinique. 69 (6), 629-636 (2011).
  28. Bolignano, D., et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. American Journal of Kidney Diseases. 52 (3), 595-605 (2008).
  29. Kashyap, S., et al. Development of renal atrophy in murine 2 kidney 1 clip hypertension is strain independent. Research in Veterinary Science. 107, 171-177 (2016).
  30. Anderson, W. P., Woods, R. L., Kline, R. L., Korner, P. I. Acute haemodynamic responses to unilateral renal artery stenosis in conscious dogs. Clinical and Experimental Pharmacology and Physiology. 12 (3), 305-309 (1985).
  31. Imanishi, M., et al. Critical degree of renal arterial stenosis that causes hypertension in dogs. Angiology. 43 (10), 833-842 (1992).
  32. Ziecina, R., Abramczyk, P., Lisiecka, A., Papierski, K., Przybylski, J. Adrenal-renal portal circulation contributes to decrease in renal blood flow after renal artery stenosis in rats. Journal of Physiology and Pharmacology. 49 (4), 553-560 (1998).
  33. Johnson, J. A., Ichikawa, S., Kurz, K. D., Fowler, W. L., Payne, C. G. Pressor responses to vasopressin in rabbits with 3-day renal artery stenosis. American Journal of Physiology. 240 (6), 862-867 (1981).
  34. Eirin, A., et al. Changes in glomerular filtration rate after renal revascularization correlate with microvascular hemodynamics and inflammation in Swine renal artery stenosis. Circulation: Cardiovascular Interventions. 5 (5), 720-728 (2012).
  35. Ma, Z., Jin, X., He, L., Wang, Y. CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis. American Journal of Physiology-Heart and Circulatory. 311 (3), 815-821 (2016).
  36. Cheng, J., et al. Temporal analysis of signaling pathways activated in a murine model of two-kidney, one-clip hypertension. American Journal of Physiology-Renal Physiology. 297 (4), 1055-1068 (2009).
  37. Wiesel, P., Mazzolai, L., Nussberger, J., Pedrazzini, T. Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension. 29 (4), 1025-1030 (1997).
  38. Johns, C., Gavras, I., Handy, D. E., Salomao, A., Gavras, H. Models of experimental hypertension in mice. Hypertension. 28 (6), 1064-1069 (1996).

Play Video

Cite This Article
Saleem, M., Barturen-Larrea, P., Saavedra, L., Gomez, J. A. A Modified Two Kidney One Clip Mouse Model of Renin Regulation in Renal Artery Stenosis. J. Vis. Exp. (164), e61058, doi:10.3791/61058 (2020).

View Video