Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Behavior

研究冻结和飞行行为的新型帕夫洛夫恐惧调理范式

Published: January 5, 2021 doi: 10.3791/61536

Summary

防御行为反应取决于威胁强度、接近程度和暴露背景。基于这些因素,我们开发了一个经典的调理范式,在单个受试者中引起有条件的冻结和飞行行为之间的明显过渡。这个模型对于理解焦虑、恐慌和创伤后应激障碍的病理学至关重要。

Abstract

与恐惧和焦虑有关的行为显著有助于生物体的生存。然而,对感知到的威胁的夸张防御反应是各种焦虑症的特点,而焦虑症是美国最常见的精神疾病形式。发现负责防御行为的神经生物学机制将有助于开发新的治疗干预措施。帕夫洛维安恐惧调理是研究与恐惧相关的学习和记忆的实验室范式。传统的巴甫洛夫恐惧调理模式的一个主要局限性是,冻结是唯一被监视的防御行为。我们最近开发出一种经过修改的帕夫洛夫恐惧调理范式,使我们能够研究个别受试者体内的有条件冻结和飞行(也称为逃生)行为。这种模式采用更高的强度脚震和更多的配对之间的条件刺激和无条件的刺激。此外,这种有条件的飞行模式利用纯音和白噪声听觉刺激的连续呈现作为条件刺激。在这种模式下进行调理后,小鼠表现出冻结行为,以响应语气刺激和白噪声期间的飞行反应。这种调理模型可用于研究生存所需的行为反应之间的快速和灵活过渡。

Introduction

恐惧是一种进化保存的适应性反应,对眼前的威胁1,2。虽然生物体对威胁具有与生俱来的防御反应,但学会的关联对于对危险3的刺激预测做出适当的防御反应至关重要。控制防御性反应的大脑回路调节不良可能导致与多重衰弱焦虑症相关的不适应反应,如创伤后应激障碍(PTSD)、恐慌障碍4和特定恐惧症5、6。美国成人焦虑症的患病率为19.1%,7、8岁的青少年为31.9%。这些疾病对个人日常生活的负担极高,对他们的生活质量产生负面影响。

在过去的几十年里,帕夫洛维安恐惧调理一直是一个强大的模型系统,以获得巨大的洞察神经机制背后的恐惧相关的学习和记忆9,10,11。帕夫洛夫人担心,调理需要将有条件的刺激(CS,如听觉刺激)与逆向无条件刺激(例如,电脚休克)对。由于冻结是标准巴甫洛夫调理范式中唤起和测量的主要行为,因此逃逸/逃跑反应等主动防御行为形式的神经控制机制基本上尚未探索。先前的研究表明,不同形式的防御行为,如飞行,是根据威胁强度,接近和上下文13,14引起。研究大脑如何控制不同类型的防御行为可能显著有助于理解在恐惧和焦虑障碍中调节不良的神经元过程。

为了解决这一迫切需要,我们开发了一个修改的帕夫洛夫调理范式,除了冻结15,引起飞行和逃生跳跃。在这个范式中,小鼠被一个序列复合刺激(SCS)所制约,由纯色调和白噪声组成。经过两天的配对SCS与强烈的电脚休克,老鼠表现出冻结,以回应音色成分和飞行期间的白噪声。有条件的冻结和飞行行为之间的行为切换是快速和一致的。有趣的是,只有当白噪声 CS 与之前传递的脚部休克(调理上下文)处于同一上下文中,而不是在中性上下文中出现时,小鼠才会表现出飞行行为。相反,冻结响应在此中性环境中占主导地位,与音调相比,对白噪声的反应冻结程度要高得多。这与上下文在调节防御性反应强度方面的作用一致,也符合背景信息在传统威胁调理范式16、17中与恐惧相关的学习和记忆中的调节作用。此模型允许以特定于上下文的方式对多个防御行为进行直接、主题内比较。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

经杜兰大学机构动物护理和使用委员会批准后,按照机构准则执行了以下步骤/程序。

1. 准备老鼠

  1. 使用年龄在3-5个月的雄性和/或雌性成年小鼠。在本研究中,我们使用了从杰克逊实验室获得的雄性C57BL/6J小鼠,但任何来自信誉良好的供应商的小鼠菌株都可以使用。
  2. 至少在实验前一周,在整个研究中,所有老鼠分别以12:12小时的光/暗周期进行。为小鼠提供食物和水的利 比图姆
  3. 在光周期内执行所有行为实验。在单个队列中在同一时间执行所有会话。例如,如果在第 1 天上午 9 点开始实验,则继续从该时间开始,直到实验完成。

2. 编写学习材料

  1. 研究背景
    1. 选择两个不同的上下文来执行实验。
    2. 使用由透明丛(直径 30 厘米)组成的圆柱形腔室作为上下文 A,具有光滑的 Plexiglas 地板。房间的高度应足以防止逃生(至少30厘米高)。
    3. 对于上下文 B,使用矩形外壳(25 厘米 x 30 厘米)与电网地板用于提供交替的当前脚部休克。这个房间的高度是非常重要的,应该至少35厘米高。或者,使用透明屋顶(确保视频可以通过此材料录制)。
      注意:使用墙面光滑、易于清洁的腔室。
    4. 使用不同的清洁解决方案来清洁上下文。例如,清洁上下文 A 与 1% 醋酸和上下文 B 与 70% 乙醇。在开始第一节课之前、测试单个小鼠之间以及完成一天的会话后,先清理上下文。这对于去除以前老鼠的嗅觉线索至关重要。彻底清洁也有助于防止尿液在冲击网格上缩放,这将危及调理会话。
      注意:清洁解决方案也作为嗅觉提示,因此在特定上下文中使用相同的清洁液。
    5. 在各自的研究过程中,将上下文 A 或上下文 B 放在声音衰减框中。
  2. 音频生成器
    1. 在上下文上方安装一个头顶扬声器,以在 75 dB 下提供听觉刺激。
    2. 使用可编程音频生成器在预先定义的时间表上生成听觉刺激。7.5 kHz 纯音是带有鼻窦波形的声音,而白噪声是不同频率的等强度的随机信号,范围为 1-20,000 Hz。
    3. 使用 TTL 脉冲以时间精度传递听觉刺激和冲击信号。
      注:在开始实验之前,使用 dB 仪表测量每个腔室中安装扬声器的声音强度输出。
  3. 休克器:将冲击器与用于提供 0.9 mA 交流冲击的电网地板连接起来。定义计算机程序中冲击的频率、发病和持续时间。在每个 SCS 结束时提供每个冲击刺激,持续时间为 1 秒,每个调理会话总共提供 5 个 SCS 冲击配对。

3. 计算机程序和视频跟踪的准备

  1. 使用软件程序中的编码生成行为协议。
  2. 在程序中,定义序列复合刺激 SCS。此刺激是 10 秒纯音的连续呈现(每个点以 500 毫秒的价格呈现,频率为 7.5 kHz,速率为 1 Hz)和 10 秒白噪声(1 Hz 的 500 毫秒点)。
  3. 假象地定义每次试验后呈现的试用间隔 (ITI)。
  4. 在研究期间,将所有鼠标行为记录到视频中,以进行后续分析。
    注:商业上可用的恐惧调理盒可能无法通过顶置摄像头记录行为。这是非常重要的,因为录制的视频用于计算水平运动,速度和动物旅行的总距离。
  5. 要设置软件跟踪,在每个相关上下文中放置一个测试鼠标,调整轮廓跟踪灵敏度,并定义重心。这将确保获得有关相对位置的可靠数据。此外,定义主题可访问的整个上下文区域。
    注:两个上下文的轮廓大小的调整非常重要,因为不同上下文中的亮度变化将改变轮廓大小。
  6. 使用腔室的已知大小和摄像机的像素尺寸确定校准系数,可用于计算速度(cm/s)。
  7. 将数据采集计算机的时间戳事件与实时事件同步。

4. 行为实验

  1. 打开所有设备:计算机、恐惧调理盒控制器、休克器以及视频和时间戳记录软件。确保仪器按适当的顺序打开。
  2. 检查所有功能,包括音调、白噪声和冲击传递,并设置数据采集系统。
  3. 将动物从储藏室运送到调节室。允许他们在那里适应至少10分钟。
  4. 将动物从家里的笼子里拿出来,轻轻地放在各自的环境中,然后立即激活计算机程序。
    注:恐惧调理系统和数据收集(时间戳、鼠标跟踪和视频录制)软件的初始化可以同时使用 TTL 脉冲介导激活。
  5. 预调理/暴露前
    1. 第 1 天,将主题放入上下文 A(中性上下文)。允许它适应室3分钟(基线期),然后暴露在4个试验的SCS20的总持续时间(图1A-1B)。
    2. 保持90年代的平均伪ITI(范围80-100s)。每次暴露前会话的总持续时间为 590 s。
  6. 恐惧调理
    1. 在第2天和第3天,将主题放入上下文B。在 3 分钟的基线周期后,将受试者暴露在 SCS 的五对组合中,并伴有 1 秒 0.9 mA 交流脚部休克。
    2. 保持 120 年代的平均伪 ITI(范围 90-150 s)。每个调理会话总共持续 820 s (图 1A)。
    3. 根据实验目标,第4天对老鼠进行召回测试(见第4.7步)或担心灭绝(见第4.8步)。
  7. 恐惧召回(以测试上下文依赖性)
    1. 第 4 天,将主题放入上下文 A。在3分钟的基线期后,提出4个试验的SCS没有脚休克,超过590秒。
    2. 保持90年代的平均伪ITI(范围80-100s)。
  8. 害怕灭绝
    1. 第 4 天,将主题放入上下文 B。在3分钟的基线期之后,在1910年代,对SCS进行了16次无脚休克的试验。
    2. 保持 90 年代的平均伪 ITI(范围为 60-120 s)。
  9. 将动物送回家笼,并重复所有动物的程序。

5. 行为量化

  1. 让观察者对实验视而不见,使用自动冻结探测器阈值对录制的视频进行冻结行为评分,然后逐帧分析像素变化。
    注:其他软件包也可用于使用2个摄像头系统自动计算冻结。观察者也可以手动对冻结行为进行评分。
  2. 将冻结定义为完全停止身体运动,但呼吸所需的运动除外,至少为 1 s。
  3. 当所有 4 只爪子离开地板时,分数会跳动,从而产生垂直和/或水平运动。
  4. 导出带有冻结、跳跃和事件标记的标记文件。
  5. 从定义的时间段(例如,每次试用前 SCS、音色和白噪声的 10s 持续时间)中提取相关事件(冻结和跳跃)。
  6. 使用电子表格文件中提取的事件的启动停止持续时间,通过从结束时间减去从相应的试用期中减去启动时间来计算冻结的持续时间。
  7. 通过总结所有试验的冻结持续时间来代表此数据在试验中或按天进行。
    注:根据研究目的,飞行或冻结行为可以从研究会话的任何试验/持续时间进行评分和计算。
  8. 将特定试用期的跳跃总数相总和。
  9. 从鼠标重心的 X-Y 轴运动框架中逐帧提取鼠标跟踪坐标生成的文件,并计算鼠标的速度(cm/s)。
    注:速度数据可能以厘米/s 或像素/s 格式显示。使用视频中为该测试上下文定义的英寸或厘米/像素值将像素/s 单位转换为厘米/s(请参阅第 3.6 节)。
  10. 根据视频的帧速率(最好是 30 帧/s)提取动物帧移动的速度数据后,计算特定帧数括号中动物的平均速度(将开始和结束时间乘以 s 30 以获取开始和结束帧数)。
  11. 通过将每个 SCS 中的平均速度除以 10 s SCS 前(基线、BL)期间的平均速度来计算飞行分数,然后为每次逃生跳跃添加 1 分(速度/速度BL + 跳跃的 # )。因此,飞行分数为 1 表示与 SCS 前期间的飞行行为没有变化。
  12. 可选,手动为其他行为(如饲养和梳妆)评分视频。

6. 统计分析

  1. 使用统计分析软件分析具有统计意义的数据。对于所有测试,统计意义的定义是 P<0.05。
  2. 使用夏皮罗-威尔克正常度测试(α=0.05)检查数据以获得正常分布。
  3. 要测试提示的效果,请使用适当的参数(配对 t 测试)或非参数(Wilcoxon 签名等级测试)测试进行对比比较。
  4. 要评估因子的双向相互作用(Cue X 试验),请执行双向 ANOVA,然后进行事后测试(例如,邦费罗尼的多重比较测试/Tukey 的测试)。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

如图所述(图1A),会话从预暴露(第 1 天)开始,然后是恐惧调理(第 2 天和第 3 天),然后是灭绝或检索(第 4 天)。

SCS在暴露前(第1天)会话中的演示没有引起小鼠的飞行或冻结反应(图2A-2B)。调理期间的行为分析(第2天和第3天)显示,与前SCS(图2B,2E)期间的冻结相比,SCS的色调成分显著增强了冻结。飞行分数在会话中发生了显著变化(第 1 天到第 3 天,n = 20;图2A)。与音调(图2C-2D)相比,小鼠在白噪声提示方面表现出更高的速度和更多的跳跃,从而增加了飞行分数。老鼠表现出防御行为的明显转变——在音调中显示较低的飞行分数,在白噪声(图2F)中显示更高的飞行分数,在冻结反应(图2G)中反之亦然。

为了测试威胁接近和背景对有条件飞行的影响,小鼠被分成两组:一组在调理环境下接受灭绝训练(图3A-3B),另一组在中性环境中暴露在SCS(图3C-3D)中,因害怕记忆记忆记忆而进行测试。接受16次灭绝训练试验的老鼠显示有条件飞行迅速灭绝(n = 12)。与音调(图3A)相比,在白噪声中,在四个试验的第一块飞行分数更高。在灭绝会议结束时,任何一个线索都不再引起飞行行为。在灭绝期间,由音调引起的冻结总体减少,白噪声介导冻结增加。与白噪声(图3B)相比,四个试验中第一块的冻结程度明显高于音调。这表明威胁的紧急性对飞行反应至关重要。

飞行反应以视背景为背景的方式减少。在中性上下文中暴露在白噪声下不会引起飞行(n = 8)。相反,中性环境中的白噪声演示会引起冻结响应,这些响应高于语气引起的响应(图 3C-3D)。这表明上下文在调节防御性反应方面的重要性。

Figure 1
图1:研究设计,以评估冻结和飞行模式。
A) 行为会话的图表。 B) 图表详细说明了系列复合刺激(SCS)的组成,以及美国的时间安排。 C) 上下文 A - 作为中性上下文,在暴露前和召回会话中使用。 D)上下文B–用于恐惧调节。这个数字已经从法多克等人2017年修改。 请点击这里查看此数字的较大版本。

Figure 2
图2:有条件的飞行响应。
A) 比较平均试飞分数 (n = 20) 后, 在第 1 - 3 天呈现的语气和白噪声。已注意到跨会话的飞行分数发生显著变化(第 1 天到第 3 天;双向重复测量 ANOVA、提示×试验互动、F (13、266) = 5.795:P<0.0001)。事后邦费罗尼的多次比较测试显示,在恐惧调理第 1 天(试用 4、P < 0.05) 和第 2 天(试验 2-5、P < 0.001)时,音调和白噪声引起的飞行分数之间存在显著差异。 B) 比较第1-3天音调和白噪声期间的平均试用度百分比冻结。请注意,整个会话的冻结百分比(第 1 天到第 3 天、n = 20 天;双向重复测量 ANOVA、提示×试验交互、F(13、266) = 20.81) 的统计学显著变化:P +lt; 0.001; 图2B)。事后邦费罗尼的多重比较测试揭示了在恐惧调理第 1 天(试验 4 和 5,P < 0.001) 和第 2 天(所有试验,P < 0.001) 时,音调和白噪声引起的冻结之间的显著差异。 C) 比较第 3 天 SCS 前、音调、白噪声和休克期间的跳跃逃生响应次数。单向 ANOVA 和 Bonferroni 的多次比较测试显示,与音调周期(分别为 P < 0.01 和 P < 0.001) 相比,白噪声和冲击期间的逃生跳跃显著更高。 D)在第3天演示音色和白噪声时飞行分数的比较。请注意,在白噪声期间,第 3 天的飞行分数显著提高(P &l; 0.001,威尔科森匹配对签名排名测试)。 E) 比较第 3 天 SCS 前冻结的百分比、音色和白噪声。第 3 天的冻结行为显示了语气和白噪声的显著影响(单向重复测量 ANOVA、F = 56.82、P<0.01)。Bonferroni 的多次比较测试表明,与 SCS 前的持续时间(P < 0.01)相比,语气的呈现显著增加百分比冻结(P < 0.01),而与 SCS 前和音调持续时间(P < 0.001)相比,冻结率显著降低。具有代表性的试验数据显示,在第3天鼠标出现音调和白噪声后,飞行(F)和冻结(G) 行为的过渡。所表示值是指± SEM. *P<0.05,**P<0.01,***P<0.001。预置,暴露前。面板A-E从法多克等人修改,2017年。 请点击这里查看此数字的较大版本。

Figure 3
图3:飞行调理后的消亡和召回(第4天)。
A)灭绝训练期间飞行分数的比较显示有条件飞行的迅速消亡(n = 12;16 试验,双向重复测量 ANOVA,提示×试验互动,F (15,165) = 3.05,P < 0.01)。与音调(P < 0.05,Wilcoxon 匹配对签名等级测试)相比,从四个灭绝试验(试验 1-4)的第一块(试验 1-4)中观察到的白噪声飞行分数显著更高。 B) 冷冻比较显示对冻结有统计学显著影响(%)遵循白噪声(n= 12;16试验,双向重复测量ANOVA,提示×试验交互,F(15,165)=3.55,P<0.01)。与音调相比,在白噪声期间,四个试验(试验1-4)的第一块(试验1-4)的冻结率要低得多(配对t测试,P <0.01)。 C)上下文的变化显著影响飞行分数(n = 8;4 试验、双向重复测量 ANOVA、提示×试验交互、F (1,7) = 27.44、P < 0.01)。与中性上下文中的音调期间相比,白噪声期间的飞行分数显著降低(双尾配对t测试,P <0.01)D)。检索过程中各试验的冻结反应也很重要(n = 8, 4 试验, 双向重复测量 ANOVA, 提示 F (1,7) = 27.67, P < 0.01) 的影响。与音调(双尾配对t测试,P <0.001)相比,WN在中性环境中的曝光显著增加了冻结响应。所表示值是指± SEM. *P<0.05,**P<0.01,***P<0.001。面板 A-D 从法多克等人 2017 年进行修改。 请点击这里查看此数字的较大版本。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

所述的声音和冲击参数是此协议的重要元素。因此,在开始实验之前测试冲击振幅和声压水平至关重要。恐惧调理研究通常使用 70-80 dB 声压水平和 0.1-1 mA 冲击强度18:因此,所述参数在传统恐惧调理范式的范围内。在以前的CS-唯一(无脚震)控制实验中,我们没有观察到小鼠的飞行或冻结反应,这表明听觉刺激在如描述的15时并不具有逆向性。将 80 dB 以上的白噪声的 dB 水平增加可能会诱发与生俱来的厌恶。然而,在75分贝下出现的噪音刺激不会引起19号小鼠抑制行为活动的形式的压力。

必须仔细选择构成 SCS 的听觉刺激。在之前的研究中,我们确定白噪声的单CS调理比纯音15的调理能产生更高的飞行分数。这说明了经济刺激的重要性,在该协议20。然而,最近的一项研究表明,与SCS序列(白噪声音)的逆转调理导致飞行到音调和冻结到白噪声21。这些数据证明,所学的线索的时间关系也是一个重要因素。

由于笼子变化是压力的潜在来源,建议在最近笼子更换后至少 2 天开始调理。为了进一步尽量减少压力对正在接受研究的小鼠的影响,应适当小心,以减少以前受试者留下的嗅觉线索,包括粪便和尿液的气味。因此,在每只鼠标之前和之后清洁腔室至关重要。为了避免其他潜在的干扰源,最好是在与任何其他正在进行的实验分开的房间里执行此协议。老鼠应该表现出非常低的基线冻结15。为了测试实验条件,每个实验室应进行试点实验,以测试每个上下文中的基线冻结。

除了C57BL/6J和Fadok等人(2017)15使用的其他转基因线外,这种方法应该适合适应其他品种的小鼠和大鼠20,21。最近的数据(Borkar等人2020年)22表明,雄性小鼠和雌性小鼠都表现出类似的飞行反应,因此该范式适合两性。正如第2.1.2步所述,为了应对高强度的冲击,小鼠跳得很高,因此仔细选择腔室的高度,以防止小鼠逃离环境。同样重要的是要确保线索和冲击刺激的一致和准确的时间。交流电和直流冲击都是有效的:但是,在使用直流冲击时,可能需要增加脚震强度,以达到与交流冲击类似的飞行分数。由于直流冲击对电生理记录的危害较小,因此建议在需要电生理学数据的研究中使用直流冲击。需要注意的是,降低脚震的强度可能会降低飞行反应的强度。

正如协议中所表示的,飞行分数的计算方法是通过将音调和白噪声期间的速度数据正常化,将它们与单独的试用前 SCS 速度值分开。但是,如果鼠标在 SCS 前表现出极高的冻结水平,则由此产生的飞行分数可能非常高,从而增加数据变异性。这可以通过使用不同的基线测量来规避,例如会话开始时 3 分钟基线周期的平均速度数据,或使用总体 SCS 前(平均 5 个试验)的平均速度,而不是单个试用前 SCS 值。

灵活和快速的行为适应威胁对生存至关重要。大多数经典的恐惧调理程序使用诱发冻结的条件作为恐惧学习的唯一决定因素。该协议的好处是,它允许研究学科内复杂的防御状态转换。以前,这个模型被用来发现行为过渡是由局部复发抑制电路在中央杏仁核15,23处理。这一范式还使研究人员能够阐明皮质-塔拉米电路,以选择防御行为21。这些研究表明,这种方法将有助于研究神经回路控制在一个主题内防御行为之间的快速过渡。这对于更好地了解焦虑、恐慌症或PTSD24,25的神经生物学基础有潜在的应用。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

这项工作得到了路易斯安那州摄政委员会通过摄政委员会支助基金(LEQSF(2018-21)-RD-A-17)和国家 卫生研究院国家精神卫生研究所 (R01MH122561)的支持。内容完全由作者负责,不一定代表国家卫生研究院的官方意见。

Materials

Name Company Catalog Number Comments
Neutral context Plexiglass cylinder 30 X 30 cm 
Fear conditioning box Med Associates, Inc. VFC-008 25 X 30 X 35 cm dimentions
Audio generator  Med Associates, Inc. ANL-926 
Shocker Med Associates Inc. ENV-414S Stainless steel grid
Speaker Med Associates, Inc. ENV-224AM Suitable for pure tone and white noise 
C57/BL6J mice Jackson laboratory, USA 664 Aged 3-5 month
Cineplex software (Editor/ studio) Plexon CinePlex Studio v3.8.0 For video tracking and behavioral scoring analysis
MedPC software V Med Associates, Inc. SOF-736
Neuroexplorer Plexon Used to extract the freezing data scored in PlexonEditor
GraphPad Prism 8 GraphPad Software, Inc. Version 8 Statistical analysis software

DOWNLOAD MATERIALS LIST

References

  1. Gross, C. T., Canteras, N. S. The many paths to fear. Nature Reviews Neuroscience. 13 (9), 651-658 (2012).
  2. LeDoux, J. Rethinking the Emotional Brain. Neuron. , (2012).
  3. Maren, S. Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience. 24, 897-931 (2001).
  4. Johnson, P. L., Truitt, W. A., Fitz, S. D., Lowry, C. A., Shekhar, A. Neural pathways underlying lactate-induced panic. Neuropsychopharmacology. 33 (9), 2093-2107 (2008).
  5. Mobbs, D., et al. From threat to fear: The neural organization of defensive fear systems in humans. Journal of Neuroscience. 29 (39), 12236-12243 (2009).
  6. Münsterkötter, A. L., et al. Spider or no spider? neural correlates of sustained and phasic fear in spider phobia. Depression and Anxiety. 32 (9), 656-663 (2015).
  7. Kessler, R. C., Wai, T. C., Demler, O., Walters, E. E. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry. 62 (6), 617-627 (2005).
  8. National Institute of Mental Health. Generalized anxiety disorder. National Institute of Mental Health. , 3-8 (2017).
  9. Herry, C., Johansen, J. P. Encoding of fear learning and memory in distributed neuronal circuits. Nature Neuroscience. 17 (12), 1644-1654 (2014).
  10. Janak, P. H., Tye, K. M. From circuits to behaviour in the amygdala. Nature. 517 (7534), 284-292 (2015).
  11. Tovote, P., Fadok, J. P., Lüthi, A. Neuronal circuits for fear and anxiety. Nature Reviews Neuroscience. 16 (6), 317-331 (2015).
  12. Seidenbecher, T., Laxmi, T. R., Stork, O., Pape, H. C. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science. 301 (5634), 846-850 (2003).
  13. Blanchard, D. C., Blanchard, R. J. Defensive behaviors, fear, and anxiety. Handbook of Anxiety and Fear. Handbook of behavioral neuroscience. Blanchard, D. C. , Elsevier Academic Press. 63-79 (2008).
  14. Perusini, J. N., Fanselow, M. S. Neurobehavioral perspectives on the distinction between fear and anxiety. Learning and Memory. 22 (9), 417-425 (2015).
  15. Fadok, J. P., et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature. 542 (7639), 96-99 (2017).
  16. Maren, S. Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behavioral Neuroscience. 113 (2), 283-290 (1999).
  17. Xu, C., et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell. 167 (4), 961-972 (2016).
  18. Curzon, P., Rustay, N. R. Chapter 2: Cued and contextual fear conditioning for rodents. Methods of Behavior Analysis in Neuroscience. 2nd edition. , CRC Press/Taylor & Francis. Boca Raton (FL). (2009).
  19. Mollenauer, S., Bryson, R., Robison, M., Phillips, C. Noise avoidance in the C57BL/6J mouse. Animal Learning & Behavior. 20 (1), 25-32 (1992).
  20. Hersman, S., Allen, D., Hashimoto, M., Brito, S. I., Anthony, T. E. Stimulus salience determines defensive behaviors elicited by aversively conditioned serial compound auditory stimuli. eLife. 9, (2020).
  21. Dong, P., et al. A novel cortico-intrathalamic circuit for flight behavior. Nature Neuroscience. 22 (6), 941-949 (2019).
  22. Borkar, C. D., et al. Sex differences in behavioral responses during a conditioned flight paradigm. Behavioural Brain Research. 389, 112623 (2020).
  23. Fadok, J. P., Markovic, M., Tovote, P., Lüthi, A. New perspectives on central amygdala function. Current Opinion in Neurobiology. 49, 141-147 (2018).
  24. Pitman, R. K., et al. Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience. 13 (11), 769-787 (2012).
  25. Canteras, N. S., Graeff, F. G. Executive and modulatory neural circuits of defensive reactions: Implications for panic disorder. Neuroscience and Biobehavioral Reviews. , (2014).

Tags

行为, 问题 167, 恐惧调理, 冻结, 飞行, 焦虑, 恐惧, 恐慌, 防御行为
研究冻结和飞行行为的新型帕夫洛夫恐惧调理范式
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Borkar, C. D., Fadok, J. P. A NovelMore

Borkar, C. D., Fadok, J. P. A Novel Pavlovian Fear Conditioning Paradigm to Study Freezing and Flight Behavior. J. Vis. Exp. (167), e61536, doi:10.3791/61536 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter