Summary

在根尖肠模型中使用路西法黄测定肠通透性

Published: July 27, 2022
doi:

Summary

本协议概述了一种在顶端肠模型中利用荧光花黄来确定肠道通透性的方法。该方法可用于确定模拟炎症性肠病(如坏死性小肠结肠炎)的肠样肠的细胞旁通透性。

Abstract

类肠病是研究炎症性肠病(如坏死性小肠结肠炎(NEC))的新兴研究工具。它们传统上生长在基底外侧(BO)构象中,其中上皮细胞的顶端表面面向内腔。在该模型中,进入类肠的管腔表面进行治疗和实验具有挑战性,这限制了研究宿主 – 病原体相互作用的能力。为了规避这种情况,创建了用于坏死性小肠结肠炎的新生儿根尖排出(AO)模型。由于肠上皮细胞通透性变化是NEC的特异性变化,因此该协议概述了使用荧光素黄(LY)作为细胞旁通透性的标志物。LY 通过所有三种主要的细胞旁途径 穿过 肠上皮屏障:孔隙、渗漏和无限制。在AO模型中使用LY可以更广泛地研究NEC的渗透性。经IRB批准和父母同意,从人类早产新生儿中收集肠道组织的手术样本。通过隐窝分离 收获 肠道干细胞并用于培养类肠。肠样生长至成熟,然后转化AO或留在BO构象中。这些要么不处理(对照),要么用脂多糖(LPS)处理,并经受缺氧条件以诱导 体外 NEC。使用LY评估渗透率。顶端蛋白闭塞带-1 和基底外侧蛋白 β-连环蛋白的免疫荧光染色证实了 AO 构象。与对照组相比,用LPS和缺氧治疗的AO和BO类肠均表现出显着增加的细胞旁通透性。与对照组相比,AO和BO类肠均显示LY对治疗肠腔的摄取增加。在AO肠模型中利用LY可以研究细胞旁通透性的所有三种主要途径。它还允许研究宿主-病原体相互作用,以及与BO肠样模型相比,这可能如何影响通透性。

Introduction

肠样是源自器官受限的人肠道干细胞的三维 (3D) 结构12。它们完全由上皮谱系组成,包含所有分化的肠上皮细胞类型2。肠样肠还维持由形成内隔室的顶端腔表面和面向周围介质的基底外侧表面组成的细胞极性。肠样是一种独特的模型,因为它们保留了产生它们的宿主的特征3.因此,早产儿产生的类肠病代表了一种模型,可用于研究主要影响该人群的疾病,例如坏死性小肠结肠炎(NEC)。

传统的肠样模型以基底外向外(BO)构象生长,其中肠被包裹在基底膜基质(BMM)的圆顶中。BMM诱导肠样保持3D结构,基底外侧表面在外面。BO类肠是NEC的合适模型,可弥合二维(2D)原代人细胞系与体内动物模型24之间的差距。通过将LPS或细菌等病原体置于肠样蛋白周围的培养基中,然后暴露于缺氧条件下,在肠中诱导NEC。BO肠样NEC模型的挑战在于它不允许有效研究宿主 – 病原体相互作用,这些相互作用发生在体内顶端表面。肠道通透性的变化是由于这些宿主-病原体相互作用。为了更好地了解通透性如何影响疾病的病理生理学基础,必须创建一个涉及处理顶端表面的模型。

Co等人首先证明,通过去除BMM圆顶并将其重新悬浮在培养基5中,可以诱导成熟的BO肠形成顶端(AO)构象。本文证明AO肠保持正确的上皮极性,包含所有肠细胞类型,维持肠上皮屏障,并允许进入顶端表面5。使用AO肠作为NEC模型,实现了疾病过程的生理再现和宿主-病原体相互作用的研究。

NEC 病理生理学的一个主要因素是肠通透性增加6。已经提出了几种分子作为体外测试肠道通透性的一种方法7。其中,荧光法黄(LY)是一种亲水染料,激发峰和发射峰分别为428 nm和540 nm,分别为8。当它穿过所有主要的细胞旁途径时,它已被用于评估各种应用中的细胞旁通透性,包括血脑和肠上皮屏障89。LY的传统应用使用在半透表面上单层生长的细胞10。LY应用于顶端表面,并通过细胞旁紧密连接蛋白在基底外侧聚集。基底外侧区室中较高的 LY 浓度表明紧密连接蛋白减少,随后肠上皮细胞屏障破裂和通透性增加10。在3D BO肠样模型中也有描述,其中将LY添加到培养基中,并对单个肠成像以将LY摄取到管腔11中。虽然这允许通过可视化LY摄取进行定性分析,但定量分析是有限的。该协议概述了一种独特的技术,该技术使用 LY 在 AO 肠样中使用体外 NEC 肠样模型评估细胞旁通透性,同时保持 3D 方向。该方法可用于渗透率的定性和定量分析。

Protocol

本研究是根据俄克拉荷马大学机构审查委员会的批准(IRB,#11610,11611)进行的。在根据IRB规范收集人体手术标本之前,需要父母同意。在IRB批准和父母同意后,从接受NEC手术或其他肠切除术(如造口切除术或闭锁修复术)的婴儿(校正胎龄(GA)在样本采集时为36-41周,所有婴儿都有早产史,估计GA为25-34周,2:1 M:F)获得人类小肠组织。类肠是由从空肠或回肠获得的组织产生的。 <p class="jove…

Representative Results

AO 构象肠样悬浮在50%LWRN培养基中72小时,假设AO构象(图1)。 这是通过使用 顶端蛋白闭塞带-1(ZO-1)和基底外侧蛋白β-连环蛋白的肠样全支架进行免疫荧光染色证实的(图1)。AO肠样在肠的外侧顶端表面显示ZO-1(绿色),而β-连环蛋白(红色)在内基底外侧表面(图1A)。BO肠样显示出相反的情况,外表面…

Discussion

肠通透性复杂,反映上皮屏障功能。肠道屏障包括介导跨细胞和细胞旁转运的单层上皮细胞14。细胞旁通透性依赖于紧密连接蛋白,这些蛋白密封上皮细胞之间的空间14。在这种细胞旁运输中,分子可以通过三种不同的途径交叉:孔隙、泄漏和不受限制的15。孔通路允许对小带电离子的渗透性,而泄漏通路允许更大的不带电分子跨越<sup class="xref…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢罗切斯特大学医学中心的Ashley Nelson为我们的肠样模型提供的仪器性帮助。我们还要感谢俄克拉荷马大学小儿外科对这个项目的支持。这项工作得到了美国国立卫生研究院[NIH拨款R03 DK117216-01A1],俄克拉荷马州成人干细胞研究中心和长老会健康基金会拨款#20180587的支持,授予俄克拉荷马大学健康科学中心外科系。

Materials

[leu] 15-gastrin 1 Millipore Sigma G9145-.1MG
100 µm sterile cell strainer Corning 431752
100% LWRN conditioned media Made in-house following Miyoshi et al.12
24-well tissue culture plate Corning 3526
96-well black, clear bottom plate Greiner Bio-One 655090
A-83-01 R&D Systems 2939/10
Alexa Fluor 488 goat anti-rabbit secondary ab, 1:1000 Invitrogen A-11034
Alexa Fluor 594 goat anti-mouse secondary ab, 1:1000 Invitrogen A-11032
Amphotericin B Thermo Fisher Scientific 15290026
Anti-zonula occludens-1 rabbit primary ab, 1:200 Cell Signaling #D6L1E
Anti-β-catenin mouse primary ab, 1:100 Cell Signaling #14-2567-82
B-27 supplement minus Vitamin A Thermo Fisher Scientific 17504-044
Barrier PAP pen Scientific Device Laboratory 9804-02
BMM (Matrigel) Corning CB-40230C
Cell Recovery Solution Corning 354270
Dissecting scissors
DMEM Thermo Fisher Scientific 11-965-118
DMEM/F-12 Thermo Fisher Scientific 11320-082
DPBS Thermo Fisher Scientific 14-190-144
Epidermal Growth Factor (EGF) Millipore Sigma GF144
Ethylenediaminetetraacetic acid (EDTA) Millipore Sigma EDS-500G
EVOS m7000 Imaging system Invitrogen AMF7000
Fetal Bovine Serum (FBS) Gemini Bio-Products 100-525
Fluoroshield with DAPI Millipore Sigma F6057-20mL
Forceps
Gentamicin Thermo Fisher Scientific 15-750-060
Glass coverslips
GlutaMAX Thermo Fisher Scientific 35050-061
GraphPad Prism 9 Dotmatics
Insulin Thermo Fisher Scientific 12585014
Lipopolysaccharide (LPS) Millipore Sigma L2630-25MG
Lucifer Yellow CH, Lithium Salt Invitrogen L453
Modular incubator chamber Billups Rothenberg Inc. MIC101
N-2 supplement Thermo Fisher Scientific 17502-048
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) Thermo Fisher Scientific 15630-080
N-Acetylcysteine Millipore Sigma A9165-5G
Nicotinamide Millipore Sigma N0636-100G
Penicillin-Streptomycin Thermo Fisher Scientific 15140-148
Refrigerated swinging bucket centrifuge
Refrigerated tabletop microcentrifuge
RPMI 1640 Medium Thermo Fisher Scientific 11875093
SB202190 Millipore Sigma S7067-5MG
SpectraMax iD3 microplate reader Molecular devices
Tube Revolver Rotator ThermoFisher Scientific 88881001
Ultra-low attachment 24-well tissue culture plate Corning 3473
Y-27632, ROCK inhibitor (RI) Tocris 1254

References

  1. Ranganathan, S., Smith, E. M., Foulke-Abel, J. D., Barry, E. M. Research in a time of enteroids and organoids: How the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes. 12 (1), 1795492 (2020).
  2. De Fazio, L., et al. Necrotizing enterocolitis: Overview on in vitro models. International Journal of Molecular Sciences. 22 (13), 6761 (2021).
  3. Kovler, M. L., Sodhi, C. P., Hackam, D. J. Precision-based modeling approaches for necrotizing enterocolitis. Disease Models & Mechanisms. 13 (6), (2020).
  4. Ares, G. J., Buonpane, C., Yuan, C., Wood, D., Hunter, C. J. A novel human epithelial enteroid model of necrotizing enterocolitis. Journal of Visualized Experiments. (146), e59194 (2019).
  5. Co, J. Y., et al. Controlling epithelial polarity: A human enteroid model for host-pathogen interactions. Cell Reports. 26 (9), 2509-2520 (2019).
  6. Buonpane, C., et al. ROCK1 inhibitor stabilizes E-cadherin and improves barrier function in experimental necrotizing enterocolitis. The American Journal of Physiology-Gastrointestinal and Liver Physiology. 318 (4), 781-792 (2020).
  7. Hill, D. R., Huang, S., Tsai, Y. H., Spence, J. R., Young, V. B. Real-time measurement of epithelial barrier permeability in human intestinal organoids. Journal of Visualized Experiments. (130), e56960 (2017).
  8. Lian, P., Braber, S., Varasteh, S., Wichers, H. J., Folkerts, G. Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture. Scientific Reports. 11, 13186 (2021).
  9. Zhao, W., Han, L., Bae, Y., Manickam, D. S. Lucifer yellow – A robust paracellular permeability marker in a cell model of the human blood-brain barrier. Journal of Visualized Experiments. (150), e58900 (2019).
  10. Manabe, A., et al. Chlorpheniramine increases paracellular permeability to marker fluorescein lucifer yellow mediated by internalization of occludin in murine colonic epithelial cells. Biological and Pharmaceutical Bulletin. 40 (8), 1299-1305 (2017).
  11. Bardenbacher, M., et al. Permeability analyses and three dimensional imaging of interferon gamma-induced barrier disintegration in intestinal organoids. Stem Cell Research. 35, 101383 (2019).
  12. Miyoshi, H., Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nature Protocols. 8 (12), 2471-2482 (2013).
  13. Buonpane, C., et al. Experimental modeling of necrotizing enterocolitis in human infant intestinal enteroids. Journal of Investigative Surgery. 35 (1), 111-118 (2022).
  14. Chanez-Paredes, S. D., Abtahi, S., Kuo, W. -. T., Turner, J. R. Differentiating between tight junction-dependent and tight junction-independent intestinal barrier loss in vivo. Methods in Molecular Biology. 2367, 249-271 (2021).
  15. Shen, L., Weber, C. R., Raleigh, D. R., Yu, D., Turner, J. R. Tight junction pore and leak pathways: A dynamic duo. Annual Review of Physiology. 73, 283-309 (2011).
  16. Monaco, A., Ovryn, B., Axis, J., Amsler, K. The epithelial cell leak pathway. International Journal of Molecular Sciences. 22 (14), 7677 (2021).
  17. Srinivasan, B., et al. TEER measurement techniques for in vitro barrier model systems. Journal of Laboratory Automation. 20 (2), 107-126 (2015).
  18. Kasendra, M., et al. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Scientific Reports. 8, 2871 (2018).
  19. Stroulios, G., et al. Culture methods to study apical-specific interactions using intestinal organoid models. Journal of Visualized Experiments. (169), e62330 (2021).
  20. Frost, T. S., Jiang, L., Lynch, R. M., Zohar, Y. Permeability of epithelial/endothelial barriers in transwells and microfluidic bilayer devices. Micromachines. 10 (8), 533 (2019).
check_url/64215?article_type=t

Play Video

Cite This Article
Liebe, H., Schlegel, C., Cai, X., Golubkova, A., Leiva, T., Berry, W. L., Hunter, C. J. Determining Intestinal Permeability Using Lucifer Yellow in an Apical-Out Enteroid Model. J. Vis. Exp. (185), e64215, doi:10.3791/64215 (2022).

View Video