Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Cancer Research

RNA荧光 位杂交在人骨肉瘤细胞中长链非编码RNA定位

Published: June 16, 2023 doi: 10.3791/65545
* These authors contributed equally

Summary

本方案描述了一种RNA荧光 原位 杂交以在人骨肉瘤细胞中定位lncRNA的方法。

Abstract

已经研究了长链非编码RNA(lncRNA)在癌症中的重要作用,如调节癌细胞的增殖、上皮-间充质转化(EMT)、迁移、浸润和自噬。细胞中lncRNA的定位检测可以深入了解其功能。通过设计lncRNA特异性反义链序列,然后用荧光染料标记,RNA荧光 原位 杂交(FISH)可用于检测lncRNA的细胞定位。随着显微镜的发展,RNA FISH技术现在甚至可以对表达不良的lncRNA进行可视化。该方法不仅可以单独检测lncRNA的定位,还可以利用双色或多色免疫荧光检测其他RNA、DNA或蛋白质的共定位。在此,我们以人骨肉瘤细胞中的lncRNA小核仁RNA宿主基因6(SNHG6)为例,对RNA FISH的详细实验操作步骤和注意事项进行了介绍,以期为想要进行RNA FISH实验,尤其是lncRNA FISH的研究人员提供参考。

Introduction

近年来,全基因组技术的进步极大地扩展了我们对人类基因组的理解。大约93%的人类基因组可以转录成RNA,但只有2%的RNA可以翻译成蛋白质;其余 98% 没有蛋白质翻译功能的 RNA 称为非编码 RNA (ncRNA)1。长链 ncRNA (lncRNA) 是一类非编码 RNA (ncRNA) 中含有 200 多个核苷酸2,由于参与细胞的许多生理和病理过程,如分化、周期调控、凋亡、迁移和侵袭 3,4,5因此越来越受到关注.LncRNA通过调节染色质结构和核基因表达、控制mRNA剪接过程和转录后修饰等多种机制发挥作用6。LncRNA在转录和转录后水平上调节恶性肿瘤的发生、发展和转移。转录调控是通过与染色体结构结合影响 RNA 转录在细胞核中实现的,而转录后调控是通过内源性竞争性 RNA (ceRNA) 机制控制靶基因在细胞质中实现的 5,7,8CeRNA揭示了一种新的RNA相互作用机制,即lncRNA可以作为海绵吸附miRNA,抑制miRNA介导的相关靶基因降解9。因此,有关lncRNA的亚细胞定位的信息,无论特定的lncRNA位于细胞质还是细胞核中,对于帮助确定其生物学功能都很重要。

目前,lncRNA定位主要通过两种方法进行检测,一种是通过细胞核/细胞质组分分离试验,另一种是通过RNA FISH。在前者中,分别提取细胞质和细胞核组分中的RNA,然后用特异性lncRNA引物进行PCR扩增,以检测细胞质和细胞核中lncRNA的比例。这种方法的优点是时间效率高,而缺点是实际的lncRNA定位不能直接反映在细胞质和细胞核中lncRNA的相对比例上。RNA FISH可以通过设计lncRNA特异性反义链序列,然后用荧光染料标记来检测细胞中的lncRNA定位10。随着探针技术和检测方法的进步,RNA FISH方法得到了改进,包括荧光团标记的多个寡核苷酸探针组11、LNA探针12和支链DNA(bDNA)探针13RNA FISH不仅可以检测lncRNA的定位,还可以使用双色或多色免疫荧光14检测其他RNA、DNA或蛋白质的共定位。

在这项工作中,我们以RNA FISH在骨肉瘤细胞(143B)中lncRNA小核仁RNA宿主基因6(SNHG6)的详细细胞内定位检测方案为例。SNHG6 是一种 600-730 核苷酸的成熟剪接形式的 lncRNA,被鉴定为多种人类癌症的新型致癌基因,包括结直肠癌、胃癌、卵巢透明细胞癌、骨肉瘤和肝细胞癌15161718研究证实了 SNHG6 参与癌细胞的生物学行为,例如增殖、EMT 和自噬,并显示了 SNHG6 的细胞质定位,它可能通过结合(海绵化)miRNA151617 来影响靶基因。本文介绍了通过RNA FISH进行SNHG6细胞内定位的详细检测方案。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

有关本协议中使用的所有材料、试剂和仪器的详细信息,请参阅 材料表图1 显示了RNA FISH的整体方案;表 1 包含所有溶液的组成, 表2 包含该协议中使用的引物序列。

1. 探针准备

  1. 识别并获取目标靶标 lncRNA 的 FASTA 序列,例如从 GenBank (https://www.ncbi.nlm.nih.gov/genbank/)。按照网站上的指示,在线设计 ISH 探针19,并查看设计算法的建议,以列出要订购的带有 Cy3 标签的探针。
  2. 提前将杂交缓冲液在37°C孵育2小时。
  3. 将 4 个光密度 (OD) 探针溶解在 160 μL 焦碳酸二乙酯 (DEPC) 处理的 ddH2O 中,浓度为 1 mg/mL,远离光。
    注:光密度(OD)代表DNA和RNA的测量单位。通常,1 OD 单位 = 33 μg/mL DNA。
  4. 为每个孔准备200μL探针混合物(1.2μL-10μL探针,70μL杂交缓冲液,用DEPC处理的ddH 2O至200μL补足体积),并建立50μg/ mL,25μg/ mL,12.5μg/ mL和6μg/ mL的系列。
    注意:探针浓度需要提前通过实验进行探索。高探针浓度会导致lncRNA的非特异性结合,而低探针浓度将导致lncRNA检测不灵敏或检测失败。
  5. 使探针混合物在73°C下变性5分钟。
    注:如果Cy3标记的DNA探针是双链的,则在95°C下将探针变性为单链DNA,持续5分钟,然后在冰上快速冷却2分钟。

2. 细胞制备

  1. 在12孔细胞培养板中的无菌玻璃盖玻片上每孔接种50,000个143B细胞,并在DMEM中孵育24小时(37°C,5%CO2)。
    注:此处接种的特定细胞数随细胞大小而变化,这适合于接种的细胞在孵育 24 小时后达到 50% 的汇合度。无菌玻璃盖玻片是圆形的,适用于 12 孔板。
  2. 取出培养基,用1x磷酸盐缓冲盐水(PBS)洗涤2 x 5分钟。
    注意:用DEPC处理的ddH2O准备1x PBS。在无RNase的条件下执行以下所有步骤。
  3. 取出1x PBS,并在每个孔中加入200μL的100%乙醇,在室温下固定15分钟。
  4. 除去乙醇,在每个孔中加入200μL0.1%Triton X-100(在1x PBS中),并在室温下孵育15分钟。
    注意:时间需要用Triton X-100透化严格控制,不能太长。
  5. 除去0.1%Triton X-100,并用1x PBS洗涤2 x 5分钟。
    注意:如果必须在此处暂停方案,请用70%乙醇替换PBS(用无RNase的ddH2O稀释100%乙醇),并将样品在4°C下储存长达3个月。
  6. 取出1x PBS,向每个孔中加入200μL2x盐水柠檬酸钠(SSC)缓冲液(用无RNase的ddH2O稀释20x SSC),并在37°C下孵育30分钟。
  7. 取出2x SSC缓冲液,向每个孔中加入200μL 70%乙醇,并在室温下孵育3分钟。
  8. 弃去70%乙醇,向每个孔中加入200μL85%乙醇(用不含RNase的ddH2O稀释100%乙醇),并在室温下孵育3分钟。
  9. 弃去85%乙醇,向每个孔中加入200μL100%乙醇,并在室温下孵育3分钟。
  10. 吸收并丢弃100%乙醇;让井干。

3. 荧光 原位 杂交(FISH)

  1. 向每个孔中加入200μL探针混合物(如步骤1.5所示变性),并在37°C下孵育过夜(16-18小时)。
    注:杂交温度与探针浓度之间存在很强的正相关关系;因此,为了优化背景,应降低杂交温度和探针浓度。
  2. 第二天,从37°C取出样品并丢弃探针混合物。向每个孔中加入200μL的0.4x SSC / 0.3%吐温-20缓冲液(在65°C下预热),并在室温下洗涤2分钟。
  3. 取出0.4x SSC / 0.3%吐温-20缓冲液,向每个孔中加入200μL的2x SSC / 0.1%吐温-20缓冲液,并在室温下洗涤2分钟。
  4. 取出 2x SSC/0.1% 吐温-20 缓冲液,加入 200 μL 4',6-二脒基-2-苯基吲哚 (DAPI) 染色溶液 (1 μg/mL),避光染色 20 分钟。
  5. 弃去DAPI染料溶液,在室温下用1x PBS洗涤2分钟。
  6. 将 50 μL 含有口香糖的封固剂加入载玻片上,并将玻璃盖玻片放在载玻片上进行固定。
    注意:务必将盖玻片放在载玻片上,细胞面朝下。
  7. 在荧光显微镜下观察。
    注意:使用荧光显微镜或激光共聚焦显微镜;后者产生更高的灵敏度和清晰度成像。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

显示了人骨肉瘤细胞中SNHG6 FISH的代表性图像(图2)。阴性对照用阴性Ctrl探针处理;阳性对照用U6探针 20处理。SNHG6探针和U6探针用Cy3标记,Cy3发出红色荧光。DAPI是一种染料,可对DNA进行染色,从而发出蓝色荧光。这一结果表明,SNHG6主要定位于细胞质中,这些信息可为SNHG6的进一步研究提供重要方向。

如果使用非常高浓度的探针,则可以在荧光显微镜下看到背景颜色。 图 3 显示了在 RNA FISH 中使用高浓度 SNHG6 探针时的代表性图像。白色箭头代表非特异性染色。

Figure 1
1:lncRNA 的 RNA FISH 方案流程图。该图表显示了RNA FISH实验过程的关键方案。缩写:FISH=荧光原位杂交;lncRNA = 长链非编码 RNA。请点击这里查看此图的较大版本.

Figure 2
图 2:LncRNA (SNHG6) 在人骨肉瘤细胞中的定位 (143B)。 阴性对照用阴性对照探针处理。阳性对照用 U6 探针处理。 SNHG6 U6 探针用 Cy3 标记,Cy3 发出红色荧光。DAPI是一种染料,可对DNA进行染色并发出蓝色荧光。红色和蓝色合并成粉红色。使用荧光显微镜拍摄图像。比例尺 = 10 μm。 缩写:LncRNA = 长链非编码 RNA;DAPI = 4',6-二脒基-2-苯基吲哚。 请点击这里查看此图的较大版本.

Figure 3
图 3:RNA FISH 中高浓度 SNHG6 探针的代表性图像。 SNHG6 探针用Cy3标记,Cy3发出红色荧光。DAPI是一种染料,可对DNA进行染色并发出蓝色荧光。红色和蓝色合并成粉红色。使用荧光显微镜拍摄图像。比例尺 = 10 μm。 请点击这里查看此图的较大版本.

表1:RNA FISH杂交实验中使用的溶液组成。 所有稀释都应使用无菌、无 RNase 的水进行。所有添加的水均经过 DEPC 处理的 ddH2O。 缩写:FISH = 荧光 原位 杂交;DEPC = 焦碳酸二乙酯。 请按此下载此表格。

表2:本实验中使用的所有探针序列。请按此下载此表格。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

该RNA FISH方案不仅可以检测lncRNA在细胞中的定位,还可以检测细胞中其他RNA、DNA或蛋白质的共定位,也可用于检测lncRNA在石蜡包埋组织中的位置。然而,在这种情况下的具体方案是不同的,因为石蜡包埋的组织需要脱蜡21。该实验程序可应用于 48 孔或 96 孔板,但 384 孔板太小,无法在此处使用。

需要注意该方法的几个关键步骤,包括无RNase环境、探针浓度、杂交温度以及阴性和阳性对照的设置。首先,无RNase条件至关重要,因为RNase会破坏核苷酸之间的键,并导致lncRNA的降解。其次,通常推荐的探针浓度范围为 5 至 50 μg/mL。高探针浓度会导致 lncRNA 的非特异性结合,而低探针浓度会导致 lncRNA 检测不灵敏或检测失败 19。如果使用非常高浓度的探针,即使在仅存在加扰探针(阴性对照)的情况下,也可以在荧光显微镜下看到背景颜色;因此,在初步实验期间,通常使用相同浓度的阴性对照来建立基线(与内部对照相同),探索适当的探针浓度,以避免任何非特异性结合。在以下实验中使用阴性对照组中不含背景色的最高探针浓度,在没有非特异性结合的情况下呈现最强的信号转导。第三,建议设计至少两个或三个探针,用于特定lncRNA的优化。同时,还可以混合使用两个或多个探针,以提高靶向lncRNA的检测灵敏度。第四,lncRNA探针的正常杂交温度为37°C。 在杂交过程中,杂交温度应保持恒定和均匀。不同探针之间的杂交温度范围为 34 至 38 °C。 杂交温度与探针浓度呈强正相关;因此,为了优化背景,应降低探针浓度。最后,设置阴性和阳性对照也很重要。无探针组用作阴性对照以获得背景信号。 使用U6 探针或核糖体RNA探针作为阳性对照,以排除假阳性结果的可能性。

这种方法有几个优点。lncRNA探针的荧光颜色可以改变。异硫氰酸荧光素 (FITC)、荧光素 (FAM) 和 Alexa Fluor 488 发出绿色荧光,而 Cy3 和 Alexa Fluor 555 发出红色荧光。FITC 用于典型的绿色,Cy3 用于典型的红色。此外,还可以使用荧光显微镜或激光共聚焦显微镜获得图像。后者的图像比使用荧光显微镜获得的图像更灵敏、更清晰。

RNA FISH方法的局限性在于这是一种定性方法;因此,结果是不可量化的。由于杂交时间的变化和荧光显微镜观察过程中主观因素的影响,lncRNA在细胞中的表达无法准确定量。lncRNA在不同细胞组分中的表达水平只能定性评估。然而,随着技术的改进,已经开发了一种单分子荧光 原位 杂交 (smFISH) 方法22 来定量 RNA 表达水平;未来可能会报道更多的smFISH检测。

RNA FISH技术具有广泛的应用。lncRNA的细胞内定位检测有利于lncRNAs生物学机制的研究。同时,该技术还可用于检测细胞中其他非编码RNA的定位,包括circRNA、miRNA和tRNA。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者声明他们没有相互竞争的经济利益。

Acknowledgments

这项工作得到了(1)中国国家重点研发计划(2020YFE0201600)的资助;(2)国家自然科学基金(81973877 82174408);(3)上海市医院中药制剂产业转化协同创新中心;(4)上海中医药大学预算内研究项目(2021LK047)。

    

Materials

Name Company Catalog Number Comments
Automatic cell counter Shanghai Simo Biological Technology Co., Ltd IC1000 Counting cells
Cell culture plate-12 Shanghai YueNian Biotechnology Co., Ltd 3513,corning Place the coverslips in the plate
 Cell line (143B) Cell Bank of Chinese Academy of Sciences CRL-8303 osteosarcoma cancer cell line
Centrifuge tube (15 mL, 50 mL) Shanghai YueNian Biotechnology Co., Ltd  430790, Corning Centrifuge the cells
Coverslips Shanghai YueNian Biotechnology Co., Ltd abs7026 The cells are seeded on the coverslips
Cy3 label-SNHG6 DNA probe Shanghai GenePharma Co.,Ltd A10005 Detect SNHG6 location
DMEM media Shanghai YueNian Biotechnology Co., Ltd LM-E1141 Cell culture medium
Dry Bath Incubator Haimen Kylin-Bell Lab Instruments Co.,Ltd. DKT200-2  Incubation at different high temperatures
Ethanol 100%  Sinopharm Chemical ReagentCo., Ltd 10009218 dehydration
Fluorescence microscope Shanghai Waihai Biotechnology Co., LTD Olympus BX43 equipped with a camera of Olympus U-TV0.5XC-3(SN:5J01719),olympus Observation and positioning
Incubator Shanghai Yiheng Scientific Instrument Co., LTD DHP-9051 The samples were incubated at 37 °C.
Mounting Medium Sangon Biotech (Shanghai) Co., Ltd. E675004 Attach the coverslips to the slide
Shaker Haimen Kylin-Bell Lab Instruments Co.,Ltd. TS-8S Washing sample
Slide Shanghai YueNian Biotechnology Co., Ltd 188105 The coverslips is placed on the slide
Triton X-100 Sangon Biotech (Shanghai) Co., Ltd. A600198 Permeable membrane and nuclear membrane
 Trypsin (0.25%) Shanghai YueNian Biotechnology Co., Ltd 25200056, Gibco trypsin treatment of cells
Tween-20 Sangon Biotech (Shanghai) Co., Ltd. A600560 detergent

DOWNLOAD MATERIALS LIST

References

  1. Djebali, S., et al. Landscape of transcription in human cells. Nature. 489 (7414), 101-108 (2012).
  2. Li, C. H., Chen, Y. Insight into the role of long noncoding RNA in cancer development and progression. International Review of Cell and Molecular Biology. 326, 33-65 (2016).
  3. Pan, R., et al. lncRNA FBXL19-AS1 regulates osteosarcoma cell proliferation, migration and invasion by sponging miR-346. OncoTargets and Therapy. 11, 8409-8420 (2018).
  4. Jia, D., Niu, Y., Li, D., Liu, Z. lncRNA C2dat1 promotes cell proliferation, migration, and invasion by targeting miR-34a-5p in osteosarcoma cells. Oncology Research. 26 (5), 753-764 (2018).
  5. Liu, Y., Wang, D., Ji, Q., Yan, J. LncRNA MATN1-AS1 for prediction of prognosis in osteosarcoma patients and its cellular function. Molecular Biotechnology. 64 (1), 66-74 (2022).
  6. Luo, M. L. Methods to study long noncoding RNA biology in cancer. Advances in Experimental Medicine and Biology. 927, 69-107 (2016).
  7. Zhao, A., et al. lncRNA TUSC7 inhibits osteosarcoma progression through the miR-181a/RASSF6 axis. International Journal of Molecular Medicine. 47 (2), 583-594 (2021).
  8. Tong, C. J., et al. LncRNA RUSC1-AS1 promotes osteosarcoma progression through regulating the miR-340-5p and PI3K/AKT pathway. Aging. 13 (16), 20116-20130 (2021).
  9. Qi, X., et al. ceRNA in cancer: possible functions and clinical implications. Journal of Medical Genetics. 52 (10), 710-718 (2015).
  10. Tripathi, V., Fei, J., Ha, T., Prasanth, K. V. RNA fluorescence in situ hybridization in cultured mammalian cells. Methods in Molecular Biology. 1206, 123-136 (2015).
  11. Femino, A. M., Fay, F. S., Fogarty, K., Singer, R. H. Visualization of single RNA transcripts in situ. Science. 280 (5363), 585-590 (1998).
  12. Thomsen, R., Nielsen, P. S., Jensen, T. H. Dramatically improved RNA in situ hybridization signals using LNA-modified probes. RNA. 11 (11), 1745-1748 (2005).
  13. Player, A. N., Shen, L. P., Kenny, D., Antao, V. P., Kolberg, J. A. Single-copy gene detection using branched DNA (bDNA) in situ hybridization. The Journal of Histochemistry and Cytochemistry. 49 (5), 603-612 (2001).
  14. Hazra, R., Spector, D. L. Simultaneous visualization of RNA transcripts and proteins in whole-mount mouse preimplantation embryos using single-molecule fluorescence in situ hybridization and immunofluorescence microscopy. Frontiers in Cell and Developmental Biology. 10, 986261 (2022).
  15. Xu, M., et al. lncRNA SNHG6 regulates EZH2 expression by sponging miR-26a/b and miR-214 in colorectal cancer. Journal of Hematology & Oncology. 12 (1), 3 (2019).
  16. Yan, K., Tian, J., Shi, W., Xia, H., Zhu, Y. LncRNA SNHG6 is associated with poor prognosis of gastric cancer and promotes cell proliferation and EMT through epigenetically silencing p27 and sponging miR-101-3p. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 42 (3), 999-1012 (2017).
  17. Zhu, X., Yang, G., Xu, J., Zhang, C. Silencing of SNHG6 induced cell autophagy by targeting miR-26a-5p/ULK1 signaling pathway in human osteosarcoma. Cancer Cell International. 19, 82 (2019).
  18. Birgani, M. T., et al. Long non-coding RNA SNHG6 as a potential biomarker for hepatocellular carcinoma. Pathology Oncology Research: POR. 24 (2), 329-337 (2018).
  19. Nielsen, B. S., et al. Detection of lncRNA by LNA-based in situ hybridization in paraffin-embedded cancer cell spheroids. Methods in Molecular Biology. 2348, 123-137 (2021).
  20. Li, Y., et al. Long noncoding RNA SNHG6 regulates p21 expression via activation of the JNK pathway and regulation of EZH2 in gastric cancer cells. Life Sciences. 208, 295-304 (2018).
  21. Traylor-Knowles, N. In situ hybridization techniques for paraffin-embedded adult coral samples. Journal of Visualized Experiments: JoVE. (138), e57853 (2018).
  22. Wang, S. Single molecule RNA FISH (smFISH) in whole-mount mouse embryonic organs. Current Protocols in Cell Biology. 83 (1), 79 (2019).

Tags

RNA荧光原位杂交, 长链非编码RNA, 癌症, 增殖, 上皮-间充质转化, 迁移, 浸润, 自噬, 细胞定位, 荧光染料, RNA FISH技术, 显微镜, 低表达LncRNA, 共定位, 双色免疫荧光, 多色免疫荧光, 实验操作规程, 注意事项
RNA荧光 <em>原</em> 位杂交在人骨肉瘤细胞中长链非编码RNA定位
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Chang, J., Ma, X., Sun, X., Zhou,More

Chang, J., Ma, X., Sun, X., Zhou, C., Zhao, P., Wang, Y., Yang, Y. RNA Fluorescence In Situ Hybridization for Long Non-Coding RNA Localization in Human Osteosarcoma Cells. J. Vis. Exp. (196), e65545, doi:10.3791/65545 (2023).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter