Author Produced

嗅觉受体神经元在全山免疫标记

Neuroscience

Your institution must subscribe to JoVE's Neuroscience section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Karim, M. R., Endo, K., Moore, A. W., Taniguchi, H. Whole Mount Immunolabeling of Olfactory Receptor Neurons in the Drosophila Antenna. J. Vis. Exp. (87), e51245, doi:10.3791/51245 (2014).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

气味分子结合到他们的目标受体的精确和协调的方式。每个受体识别的特定信号并中继该信息到大脑。因此,确定嗅觉信息是如何传递到大脑,修改这两个认知和行为,值得调查。有趣的是,新出现的证据表明,细胞转导和转录因子参与了嗅觉受体神经元的多样化。在这里,我们提供了一个强大的整体安装免疫标记法来测定体内嗅觉受体神经元组织。使用这种方法,我们发现所有的嗅觉受体神经元具有抗ELAV抗体,已知的泛神经标记物和Or49a-mCD8 :: GFP,用抗GFP抗体是NBA神经元中特异性表达嗅觉受体神经元。

Introduction

嗅觉系统使用一个巨大的各种气味分子之间进行区分,并随后发送所得到的信息到大脑高级中心。这种输入是用来精确地控制动物的基本行为,如喂养和交配1-6。因为每个嗅觉神经元类型与一组特定的气味,嗅觉受体神经元的关联的多样化(ORN),s是正常嗅觉系统功能7是必不可少的。

果蝇遗传学使我们能够执行涉及与ORN发育和生理功能8-16相关的分子机制单细胞水平的调查。 果蝇触角整装免疫染色,使我们更详细地了解所涉及的嗅觉受体神经元的多样化的分子机制(ORN)秒7。本文中,我们提供了一种简单的方法的全面描述,以交流hieve这一点。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1,准备的苹果平板

  1. 混合12.5克琼脂,125毫升100%市售苹果汁,12.5克葡萄糖,和375毫升水2 O。为1〜2分钟微波将混合物倒入至3厘米细胞培养皿。贮存于4℃。

2,遗传交叉

  1. 使用下列代表的遗传交叉:

Or49a-mCD8 :: GFP / CYO x宽1118

3,夹层和染色协议

  1. 麻醉苍蝇,然后抱着它用钳子剪断飞头垂直。
  2. 小心地将含天线部分的​​苹果平板。
  3. 用切细解剖剪刀天线的第三部分。
  4. 放置90微升的固定溶液(4%多聚甲醛在0.1%的PBST(PBS,0.1%的Triton X-100)),以在玻璃底培养皿的中间。
  5. 轻轻地转移解剖antennAE用锋利的针直接将固定溶液。如果需要的话,身体浸没触角成使用的针的溶液。
  6. 孵育40分钟,在室温(RT)。在0.4%的PBST(PBS,0.4%的Triton X-100)洗触角,3X 10分钟每个,保持它们在相同的菜。使用黄色提示,删除和添加PBST解决方案。每次用90微升洗涤液中。
    注意:不要将菜成振动筛免疫组化期间。在取出或添加溶液放入盘中,把​​所有的触角到使用针盘的中央,仔细添加或删除从盘边缘的解决方案。
  7. 与90微升5%正常马血清的0.1%PBST在室温20分钟挡住天线。
  8. 除去封闭液后,温育在0.1%PBST中含有湿的容器中在4℃下5%马血清48小时初级抗体90μL如先前所描述的天线
  9. 洗触角6X 10分钟0.4%PBST。
  10. 孵育天线与90微升的二抗在0.1%PBST中含5%马血清48小时,在4℃下使用0.4%PBST洗涤6次10分钟。
  11. 要安装天线,从培养皿尽可能除去PBST逐步引入两种不同浓度的甘油对触角。首先40%甘油添加到培养皿1-2分钟;然后删除它并添加80%甘油。
  12. 小心地用黄尖培养皿中提取天线(包括80%的甘油),并放置到幻灯片。轻轻将盖玻片上的顶部和密封盖玻片的边缘用指甲油。该天线现在已经准备好通过荧光显微镜成像。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

确保两个夹层和固定被迅速地进行是在实现成功与此协议的一个关键因素。用细剪刀和镊子也至关重要。染色后,荧光标记的天线进行了共聚焦显微镜下观察。我们通常使用20倍镜头采取1μm的部分。我们标记的NBA使用Or49a-mCD8 :: GFP 7 ORNs并计数的NBA ORNs的野生型天线的数目。该mCD8-GFP报告是细胞膜本地化等的表达见图OR49a ORNs 2展品细胞膜表达GFP。在图2中示出了使用抗GFP抗体和抗ELAV用作泛神经标记物的NBA ORNs表达。每个天线的NBA ORNs的平均数为20(N = 8)。

图1
图1:dissectio的一般概述Ñ​​程序。

图2
图2:共焦Z系列一个成功的解剖天线的投影 。以检测神经元抗ELAV抗体被用作一个泛神经标记物(A)和抗GFP抗体来检测特定气味受体的表达(B)和合并的图像,如图(C)。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

果蝇天线,我们描述了解剖简单,易于在实验室环境中进行。以确保成功剥离,有必要利用细边剪刀。而免疫染色的解剖天线,它孵育他们在一个湿气填充容器内,避免抗体溶液的蒸发是很重要的。解剖天线有一种倾向,在溶液中自由浮动。用0.1%的Triton的PBS中固定期间和阻断步骤,将促进溶液中的天线的浸没并以确保更好地染色。使用“玻璃底培养皿”可以减少免疫染色过程中天线的损耗,确保抗体溶液在每个实验中使用的少量(90微升)。

神经类多元化是神经发生的一个重要特征。这种生理过程是体现在嗅觉系统,它利用一个大阵列的嗅觉受体神经元(ORN)类。各种各样ORNs与气味受体表达和轴突靶向的生成是至关重要的产生需要用于传输从气味分子信息到大脑高级中枢的神经元的多样性。我们的整个安装天线染色协议有助于促进我们的分子机制ORN多元化的理解。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者什么都没有透露。

Acknowledgments

本研究为战略研究基金会在民办高校和学术振兴会青年科学家乙津贴为HT我们要感谢大竹德仁编辑的视频片段支持文部科学省支持的项目。

Materials

Name Company Catalog Number Comments
Stemi DV4 dissection microscope Zeiss Stemi DV4
Glass bottom culture dishes  MatTek corporation P35G-0-10-C
Dissection scissor Fine Science Tools 15000-08
Rat anti-ELAV Developmental Studies Hybridoma Bank 7E8A10 Dilution 1:200
Mouse anti-GFP Invitrogen A11122 Dilution 1:400
Donkey Anti-Rabbit IgG Jackson ImmunoResearch Laboratories 711-225-152 Dilution 1:200
Donkey Anti-Rat IgG Jackson ImmunoResearch Laboratories 712-165-150 Dilution 1:200

DOWNLOAD MATERIALS LIST

References

  1. Christensen, T. A., White, J. Representation of olfactory information in the brain In The Neurobiology of Taste and Smell. New York. 201-232 (2000).
  2. Ache, B. W. Towards a common strategy for transducing olfactory information. Sem. Cell Biol. 5, 55-63 (1994).
  3. Bargmann, C. I., Hartwieg, E., Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction. C. elegans. Cell. 13, 515-527 (1993).
  4. Barth, A. L., Justice, N. J., Ngai, J. Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron. 16, 23-34 (1996).
  5. Firestein, S. How the olfactory system makes sense of scents. Nature. 413, 211-218 (2001).
  6. Stockinger, P., et al. Neural circuitry that governs Drosophila male courtship behavior. Cell. 121, 795-807 (2005).
  7. Endo, K., et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat Neurosci. 15, 224-233 (2011).
  8. Karim, M. R., Moore, A. W. Morphological analysis of Drosophila larval peripheral sensory neuron dendrites and axons using genetic mosaics. J Vis Exp. (2011).
  9. Suh, G. S., et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature. 431, 854-859 (2004).
  10. Sachse, S., Galizia, C. G. Role of inhibition for temporal and spatial odor representation in olfactory output neurons: A calcium imaging study. J Neurophysiol. 87, 1106-1117 (2002).
  11. Hallem, E. A., Ho, M. G., Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell. 117, 965-979 (2004).
  12. Vosshall, L. B., Wong, A. M., Axel, R. An olfactory sensory map in the fly brain. Cell. 102, 147-159 (2000).
  13. Couto, A., Alenius, M., Dickson, B. J. Molecular, anatomical and functional organization of the Drosophila olfactory system. Curr Biol. 15, 1535-1547 (2005).
  14. Clyne, P., et al. Odorant response of individual sensilla on the Drosophila antenna. Invert Neurosci. 3, 127-135 (1997).
  15. Vosshall, L. B., et al. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 96, 725-736 (1999).
  16. Wang, J. W., et al. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell. 112, 271-282 (2003).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics