Trial Ending in: Request Full Access Tell Your Colleague About Jove

24.1: What is the Immune System?
TABLE OF
CONTENTS

 
TRANSCRIPT

24.1: What is the Immune System?

Overview

The immune system comprises diverse biological structures and processes that protect the body from disease. These processes can be classified into innate and adaptive immunity. To work effectively, the immune system needs to detect pathogens by distinguishing the body’s own structures from foreign elements. If this determination fails, autoimmune diseases occur in which the immune system reacts against the body’s own tissue.

The Innate Immune System Acts Fast and Non-specifically

The innate immune system is the first line of defense against infection. It comprises physical barriers and a variety of cells that act quickly and non-specifically against elements that are foreign to the host (i.e., non-self). Examples of physical barriers in mammals are skin, the lining of the gastrointestinal tract, and secretions, such as mucus or saliva. Once an invader overcomes physical barriers, cells of the inflammatory response are recruited to the entry site: mast cells release a plethora of chemicals that attract other cells of the innate immune system and activates the adaptive immune system. Phagocytic cells, such as neutrophils and macrophages, ingest and destroy pathogens. Natural killer cells, a special type of white blood cell, destroy virus-infected cells. Together, cells of the innate immune system eradicate the invader or hinder its spread, and activate the adaptive immune system.

Pattern Recognition Receptors Enable Organisms to Distinguish Self from Non-self

How can an organism distinguish its own tissue (self) from a foreign element or invader (non-self)? This ability is conferred by pattern recognition receptors (PRRs). These receptors recognize microbe-associated molecular patterns (MAMPs) that are unique to bacteria, viruses, parasites, or fungi. Examples are parts of the bacterial outer membrane or double-stranded RNA of viruses. MAMPs are not specific to a distinct species or pathogen variant but represent a hallmark of a broad class of pathogens (i.e., gram-negative bacteria or fungi). The innate immune system, therefore, acts non-specifically against pathogens.

The Adaptive Immune System Is Highly Specific

Vertebrates evolved the adaptive immune system, which stores a “memory” of a previous attack and can subsequently mount a stronger response against specific pathogens. While the innate immune system employs a broad range of cell types, the adaptive immune system relies on two kinds of white blood cells to target pathogens: B cells and T cells. While T cells are part of the cell-mediated immunity, B cells constitute the humoral branch of adaptive immunity.

B cells can directly destroy a foreign particle or differentiate into plasma cells that release antibodies. Antibodies then target the invader for destruction by other cells. T cells perform several functions, depending on their surface receptor composition and chemical arsenal. All T cells carry surface receptors that are each specific to a single antigen. After encountering the antigen, T cells can stimulate other parts of the immune system or actively destroy infected or cancerous cells. Some B and T cells remain available long after the infection has been cleared and, upon repeated exposure to the same foreign element, mount a stronger and faster immune response.

While the innate immune system acts within minutes to hours of a threat or infection, the adaptive immune system responds over days. Only the adaptive immune system “learns” (i.e., adapts) within the lifetime of an organism.

Autoimmune Diseases

Autoimmune diseases occur when the immune system does not function properly. Autoimmune diseases, generally, develop when the immune system is unable to differentiate the body’s healthy tissue from a foreign element. Typically, one of three pathological effects arises from an autoimmune disease: damage or destruction of tissues, altered organ growth, or altered organ function.

One example of such an autoimmune disease is Type 1 diabetes mellitus (T1DM). During the onset of T1DM, usually in children through early adulthood, immune cells produce antibodies that attack the insulin-producing cells of the pancreas, so-called β cells. The result is the destruction of β cells and subsequently the inability to regulate the blood sugar level. T1DM currently cannot be cured, but insulin treatment, a special diet and exercise help patients manage the disease. It is essential to diagnose the disease early and start management before all insulin-producing cells are destroyed.


Suggested Reading

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter