Summary

에 가이드<em> 생체</emOptogenetically 확인 된 대뇌 피질의 억제의 interneurons에서> 단일 단위 기록

Published: November 07, 2014
doi:

Summary

Here we describe our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. Neurons expressing ChR2 are identified by their response to blue light. The method uses standard extracellular recording equipment, and serves as an inexpensive alternative to calcium imaging or visually-guided patching.

Abstract

신경 생리에서 중요한 과제는 대뇌 피질의 다수의 억제 세포 유형의 응답 특성과 기능을 특성화하고있다. 우리는 여기 리마 1 동료들에 의해 개발 된 방법을 사용하여 마취 마우스 피질에서 확인 된 억제의 interneurons 안정적인, 잘 격리 된 단일 단위 기록을 얻기위한 우리의 전략을 공유 할 수 있습니다. 녹음은 특정 신경 세포의 소집단에 Channelrhodopsin-2 (ChR2)를 표현 생쥐에서 수행됩니다. 인구의 회원은 푸른 빛에 대한 간단한 플래시에 대한 반응으로 식별됩니다. "PinP의"이라, 또는 신경 세포 집단의 Photostimulation 이용한 식별 – -이 기술은 표준 세포 외 기록 장치로 구현 될 수있다. 이것은 유전자 식별 세포 외 기록 타겟팅 목적, 칼슘 이미징 또는 시각 유도 패치에 저렴하고 대안적인 접근이 될 수있다. H오히려 우리는 매일 연습하는 방법을 최적화하기위한 지침을 제공합니다. 우리는 parvalbumin 양성 (태양 광 +) 세포를 대상으로 특별히 우리의 전략을 정제하지만 이러한 소마토​​스타틴 (somatostatin) 발현 (SOM +)를하고 calretinin 발현 (CR +)의 interneurons으로뿐만 아니라 다른 interneuron 유형에 대해 작동하는 것을 발견했다.

Introduction

Characterizing the myriad cell types that comprise the mammalian brain has been a central, but long-elusive goal of neurophysiology. For instance, the properties and function of different inhibitory cell types in the cerebral cortex are topics of great interest but are still relatively unknown. This is in part because conventional blind in vivo recording techniques are limited in their ability to distinguish between different cell types. Extracellular spike width can be used to separate putative parvalbumin-positive inhibitory neurons from excitatory pyramidal cells, but this method is subject to both type I and type II errors2,3. Alternatively, recorded neurons can be filled, recovered, and stained to later confirm their morphological and molecular identity, but this is a pain-staking and time-consuming process. Recently, genetically identified populations of inhibitory interneurons have become accessible by means of calcium imaging or visually guided patch recordings. In these approaches, viral or transgenic expression of a calcium reporter (such as GCaMP) or fluorescent protein (such as GFP) allows identification and characterization of cell types defined by promoter expression. These approaches use 2-photon microscopy, which requires expensive equipment, and are also limited to superficial cortical layers due to the light scattering properties of brain tissue.

Recently, Lima and colleagues1 developed a novel application of optogenetics to target electrophysiological recordings to genetically identified neuronal types in vivo, termed “PINP” – or Photostimulation-assisted Identification of Neuronal Populations. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. Unlike many other optogenetic applications, the goal is not to manipulate circuit function but simply to identify neurons belonging to a genetically-defined class, which can then be characterized during normal brain function. The technique can be implemented with standard extracellular recording equipment and can therefore serve as an accessible and inexpensive alternative to calcium imaging or visually-guided patching. Here we describe an approach to PINPing specific cell types in the anesthetized auditory cortex, with the expectation that the more general points can be usefully applied in other preparations and brain regions.

In cortex, PINP holds particular promise for investigating the in vivo response properties of inhibitory interneurons. GABAergic interneurons comprise a small, heterogeneous subset of cortical neurons4. Different subtypes, marked by the expression of particular molecular markers, have recently been shown to perform different computational roles in cortical circuits5-9. As genetic tools improve it may eventually be possible to distinguish morphologically- and physiologically-separable types that fall within these broad classes. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. This strategy was developed specifically for targeting parvalbumin-positive (PV+) cells, but we have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons. Although PINPing is conceptually straightforward, it can be surprisingly unyielding in practice. We learned a number of tips and tricks through trial-and-error that may be useful to others attempting the method.

Protocol

참고 : 오레곤 동물 관리 및 사용위원회의 대학 승인 한 다음 프로토콜은 건강 지침의 국립 연구소에 따른다. 1. 급성 수술 복강 내 (IP) 주사 (표 1)를 통해, 케타민 – medetomidine 칵테일 동물을 마취. 참고 :이 실험에 사용 된 마우스는 드라이버 선 (; SST-iCre12, SOM의 +, CR-iCre12, CR + Pvalb-iCre11, PV +)를 interneuron하는 CRE에 의존 ChR2 – EYFP 형질 전환 line10 교차에 ?…

Representative Results

우리는 여기에 "리마 등. 한. 표 1 세부 제안 마취 칵테일, 케타민-Medetomidine – 아세 프로 마진을 (가 개발 한 optogenetic 방법을 사용하여, 마취 마우스 피질에서 유전 분류 억제의 interneurons에서 단일 단위 기록을 얻기위한 우리의 전략을 공유 KMA ").도 1은 도표 4. 3 아두 이노 마이크로 컨트롤러와 광 출력 게이팅위한 구성 및 코드를 포함하는도.도 …

Discussion

떠있을 개념적으로 간단하지만, 실제로 문제가 될 수 있습니다. 성공의 주요 결정은 전극의 선택입니다. 전기 청취 반경은 중요한 파라미터이다. 이것은 선단이 약간 먼 거리 ChR2 + 셀로부터 정지되었을 때에 하나 이에 따라 어드밴스의 속도를 조정할 수 있도록, 광 유발 스파이크를 검출하기에 충분히 커야한다. 동시에, 양호한 단일 유닛 분리 가능하도록 충분히 제한되어야한다. 즉, 전극은 이웃…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by the Whitehall Foundation and the NIH. We thank Clifford Dax (University of Oregon Technical Support Administration) for his help and expertise in designing a circuit for light delivery.

Materials

Name of Material/Equipment Company Product/Stock Number Comments/Description
ChR2-EYFP Line Jackson Colonies 12569
Pvalb-iCre (PV) Line Jackson Colonies 8069
Sst-iCre (SOM) Line Jackson Colonies 13044
Cr-iCre (CR) Line Jackson Colonies 10774
Agarose Sigma-Aldrich A9793 Type III-A, High EEO
Micro Point (dural hook) FST 10066-15
Surgical Scissors FST 14084-09
Scalpel FST 10003-12 (handle), 10011-00 (blades)
Puralube Ophthalmic Ointment Foster & Smith 9N-76855
Homeothermic Blanket Harvard Apparatus 507220F
Tungsten Microelectrodes A-M Systems 577200 12 MΩ AC resistance, 127 μm diameter, 12° tapered tip, epoxy-coated
Capillary Glass Tubing Warner Instruments G150TF-3
Heat Shrink Tubing DigiKey A332B-4-ND
Zapit Accelerator DVA SKU ZA/ZAA Use with standard Super Glue. 
Microelectrode AC Amplifier 1800 AM Systems 700000
MP-285 Motorized Micromanipulator Sutter MP-285
4-channel Digital Oscilloscopes Tektronix TDS2000C
Powered Speakers Harman Model JBL Duet
Manual Manipulator Scientifica LBM-7
800 µm Fiber Optic Patch Cable ThorLabs FC/PC BFL37-800
Power Meter ThorLabs PM100D (Power Meter), S121C (Standard Power Sensor)
475 nm Cree XLamp XP-E DigiKey XPEBLU-L1-R250-00Y01DKR-ND LED power and efficiency are continually increasing, so we recommend checking for the latest products (www.cree.com).
Arduino UNO DigiKey 1050-1024-ND

References

  1. Lima, S. Q., Hromadka, T., Znamenskiy, P., Zador, A. M. PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One. 4, (2009).
  2. Moore, A. K., Wehr, M. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci. 33, 13713-13723 (2013).
  3. Merchant, H., de Lafuente, V., Pena-Ortega, F., Larriva-Sahd, J. Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals. Prog Neurobiol. 99, 163-178 (2012).
  4. Markram, H., et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 5, 793-807 (2004).
  5. Atallah, B. V., Bruns, W., Carandini, M., Scanziani, M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron. 73, 159-170 (2012).
  6. Wilson, N. R., Runyan, C. A., Wang, F. L., Sur, M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature. 488, 343-348 (2012).
  7. Letzkus, J. J., et al. A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature. 480, 331-335 (2011).
  8. Pi, H. J., et al. Cortical interneurons that specialize in disinhibitory control. Nature. 503, 521-524 (2013).
  9. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J., Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature. 490, 226-231 (2012).
  10. Madisen, L., et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci. 15, 793-802 (2012).
  11. Hippenmeyer, S., et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, 159 (2005).
  12. Taniguchi, H., et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 71, 995-1013 (2011).
  13. Christianson, G. B., Sahani, M., Linden, J. F. Depth-dependent temporal response properties in core auditory cortex. J Neurosci. 31, 12837-12848 (2011).
  14. Povysheva, N. V., Zaitsev, A. V., Gonzalez-Burgos, G., Lewis, D. A. Electrophysiological heterogeneity of fast-spiking interneurons: chandelier versus basket cells. PLoS One. 8, 70553 (2013).

Play Video

Cite This Article
Moore, A. K., Wehr, M. A Guide to In vivo Single-unit Recording from Optogenetically Identified Cortical Inhibitory Interneurons. J. Vis. Exp. (93), e51757, doi:10.3791/51757 (2014).

View Video