Summary

基于状的不均匀 Nanopatterns 对局部控制表面粘附的研究--一种直接软骨分化的方法

Published: January 20, 2018
doi:

Summary

本文介绍了一种获得基于状的不均匀 nanopatterns 的方法, 该法允许对局部精氨酸-甘氨酸 (RGD) 的表面密度进行纳米控制, 并将其用于细胞黏附和软骨分化的研究。

Abstract

细胞黏附和分化的条件是由纳米尺度配置的细胞外基质 (ECM) 成分, 当地浓度有一个主要的影响。在这里, 我们提出了一种方法, 以获得大规模不均匀 nanopatterns 的精氨酸-甘氨酸-天冬酸 (RGD) 官能化状, 允许纳米控制的局部 RGD 表面密度。Nanopatterns 是由不同初始浓度的溶液中的状表面吸附形成的, 其特征是水接触角 (CA)、X 射线光电子能谱 (XPS) 和扫描探针显微镜技术, 如扫描隧道显微镜 (STM) 和原子力显微镜 (AFM)。用 AFM 图像, 利用最小间距离的概率等高线图测量了 RGD 的局部表面密度, 并与细胞黏附反应和分化相关。这里介绍的 nanopatterning 方法是一个简单的过程, 可以以直接的方式扩展到大面积的表面积。因此, 它完全符合细胞培养协议, 并可适用于其他配体, 发挥浓度依赖性的影响细胞。

Introduction

在这里, 我们描述一个简单和通用的状的 nanopatterning 程序, 以获得细胞培养表面, 允许在纳米尺度的局部粘附控制。已报告了 ECM 组织的纳米尺度细节,1,2,3和细胞黏附表面的 nanopatterning 提供了深刻的洞察力的细胞要求与黏附力4, 5。实验使用胶束光刻基 nanopatterns 揭示了阈值约 70 nm 的 RGD 肽 nanospacing, 细胞粘附明显延迟超过此值6,7,8 ,9。这些研究还突出了局部配体密度对细胞黏附力的影响大于9,10,11

在形态发生过程中, 细胞与周围环境的相互作用触发了第一次分化事件, 直到最终形成复杂的组织结构。在这个框架内, nanopatterned 表面被用来解决最初的细胞表面相互作用对形态发生的影响。在β型 Ti-40Nb 合金中横向间距为 68 nm 的光刻基 RGD nanopatterns 有助于维持未分化的干细胞的表型12, 而 RGD 95 和150纳米之间的 nanospacings 则增强了间充质干细胞 (MSCs) 向脂/成骨13,14,15和软骨命运16。此外, 通过向信号元件修饰的自组装大分子, 可以通过提供信号提示的纳米结构调节来指示细胞的黏附力和分化程度17。在这方面, 状的沉积与细胞相互作用的基在他们的外球面18,19,20到表面已经被用来研究细胞黏附力21,22,形态学23,24和迁移事件25,26。然而, 在这些研究中缺乏表面表征, 使得很难在状表面构型和细胞反应之间建立任何相关性。

在低离子强度的溶液中, 状吸附到低电荷表面时, 可以得到状 nanopatterns 的液样顺序和定距。27在此属性的基础上, 本文给出了一种在低带电表面上获得大尺度不均匀 nanopatterns 的方法, 它允许对局部 RGD 表面密度进行纳米尺度的 RGD 控制。水接触角 (CA), x 射线光电子能谱 (XPS) 和扫描探针显微镜技术 (STM 和 AFM nanopatterns) 表明, 局部配体密度可以调整修改初始状浓度的解决方案。利用最小间距离的概率等高线图, 用 AFM 图像对局部 RGD 表面密度进行量化, 然后与细胞实验相关联。与其他 nanopatterning 技术4相比, 基于状的 nanopatterning 非常简单, 可以很容易地扩展到较大的表面区域, 从而与单元格区域性应用程序完全兼容。Nanopatterns 被用作生物活性基质, 以评估局部 RGD 表面密度对细胞黏附力的影响28和对成人骨髓间充质干细胞的软骨诱导,29。我们的结果表明, RGD 状基 nanopatterns 维持细胞生长, 细胞粘附增强了高局部 RGD 表面密度。在分化实验中, 细胞对基质的中间粘附倾向于 MSC 缩合和早期软骨分化。由于容易与状外周组可以修改, 这里所描述的方法可以进一步扩展到其他 ECM 配体, 发挥浓度依赖性的影响细胞。

Protocol

1. 承印物的制备 在云母基底上退火 1.4 x 1.1 cm Au (111)。 将 Au (111) 衬底放在玻璃陶瓷滚刀上, 用丁烷火焰将其退火3分钟, 使基板在氩气气氛下冷却。对每个 Au (111) 衬底重复此步骤。注: 退火后应立即使用 Au (111) 衬底。 制备聚 (l-乳酸) (PLLA) 涂层玻璃基板。 切下并冲洗玻璃片。 切割显微镜幻灯片18幻灯片 1.25 cm x 1.25 cm 与钻石…

Representative Results

我们提出了一种 nanopatterning 的方法, 允许在纳米尺度上处理表面附着 (图 1)。RGD-Cys-D1 的化学结构如图 1A所示。状在导电金 (111) 表面进行了图案, 用于高分辨率的 STM 特征。解决方案中的低状浓度 (最高为 10-5% w/w) 呈现的隔离状直径为 4-5 nm (图 1B), 而高度填充的状聚合体在较高浓度 (<strong class…

Discussion

在所述协议的开发过程中, 应考虑一些关键步骤。第一个是指用扫描探针显微镜技术 nanopattern 表征。为了可视化 nanopatterns, 图案产生的表面必须有一个粗糙值低于状的平均直径, 这是在 4-5 nm 的测量, 由 STM (图 1B)。此外, 应该考虑到高分辨率 STM 成像限制在导电基板, 在这种情况下 Au (111)。在自旋涂层后, 从滑轨的拐角处提升聚合物, 可以使用生物相容胶进行校正。

?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者承认 Oriol 字体巴赫和阿尔伯特 G. 卡洛斯·卡斯塔诺在dmin量化中的帮助。他们也承认先进的数字显微镜单位在生物医学研究所 (IRB 巴塞罗那), 让作者在他们的处所录制的视频。这项工作得到了西班牙网络生物医学研究中心 (CIBER) 的支持。CIBER 是由《国家研究 & 发展 & 计划2008-2011、倡议赫尼奥2010、Consolider 方案、CIBER 行动和干杯第三研究所资助的一项倡议, 并得到欧洲区域开发基金的支持。这项工作得到了大学和创新、大学和加泰罗尼亚自治区加泰罗尼亚的企业的研究委员会 (2014 SGR 1442) 的支持。它还由 OLIGOCODES 项目资助 (No。MAT2012-38573-C02) 和 CTQ2013-41339-P, 由西班牙经济和竞争力部授予, 除了区域 V-西班牙-葡萄牙 2014-2020 POCTEP (0245_IBEROS_1_E)。C.R.P. 承认西班牙经济和竞争力部给予的财政支持 (No。IFI15/00151)。

Materials

Gold (111) on mica. 1.4×1.1 cm  Spi Supplies 466PS-AB
Glass micro slides, plain Corning 2947-75×25
Deionized water Millipore 18MΩ cm
Ethanol 96% PanReac 131085.1212
L-Lactide/DL-Lactide copolymer Corbion 95/05 molar ratio
1,4 – dioxane Sigma-Aldrich 296309-1L
Silicone oil, high temperature Acros Organics 174665000
Spinner Laurell WS-650MZ-23NPP/Lite
Tissue culture laminar flow hood Telstar Bio II Advance Class II biological safety cabinet
Filter unit Millex-GP SLGP033RB 0.22 µm
Syringe 10 mL Discardit 309110
Atomic Force microscope Veeco Instruments Dimension 3000 AFM instrument
Silicon AFM probes Budget Sensors Tap300AI-G Resonant Freq. 300 kHz, k = 40 N/m
Scanning tunneling microscope Molecular Imaging PicoSPM microscope
Pt0.8:Ir0.2 wire Advent PT671012 Diameter 0.25 mm
WSxM 4.0 software Nanotec electronica
Optical contact angle (CA) system Dataphysics
SCA20 software Dataphysics
X-ray photoelectron spectrometer Physical Electronics Perkin-Elmer PHI 5500 Multitechnique System
Fibronectin from bovine plasma Sigma-Aldrich F1141-1MG 1.0 mL solution
Dulbecco's Phosphate Buffer Saline (DPBS) Gibco 21600-10 Powder
Mouse embryo fibroblasts ATCC ATCC CRL-1658 NIH/3T3
Dulbecco's modified eagle medium (DMEM) liquid high glucose Gibco 11960044 liquid high glucose, no glutamine, 500 mL
Fetal Bovine Serum (FBS) Gibco 16000044 500 mL
L-Glutamine Invitrogen 25030 200 mM (100X)
Penicillin-streptomycin Invitrogen 15140
Sodium pyruvate Invitrogen 11360039 100 mL
T75 culture flasks Nunclon 156499
Trypsin Life Technologies 25200072 0,25% EDTA
Centrifuge Hermle Labortechnik Z 206 A
Non-tissue culture treated plate, 12 well Falcon 351143 Non-adherent
Adipose-derived hMSCs ATCC ATCC PCS-500-011 Cell vial 1 mL
MSC basal medium ATCC ATCC PCS-500-030
MSC growth kit ATCC ATCC PCS-500-040 Low serum
Chondrocyte differentiation tool ATCC ATCC PCS-500-051
Formalin solution Sigma-Aldrich HT5011-15ML neutral buffered, 10%
Ammonium chloride Sigma-Aldrich A9434-500G for molecular biology, suitable for cell culture, ≥99.5%
Saponin Sigma-Aldrich 47036-50G-F for molecular biology, used as non-ionic surfactant, adjuvant
Bovine Serum Albumin (BSA) Sigma-Aldrich A3059-50G
Rabbit monoclonal [Y113] anti-paxillin antibody Abcam ab32084 Diluted 1:200
Mouse monoclonal [1F5] anti-collagen alpha-1 XX chain  Acris Antibodies AM00212PU-N Diluted: 1:400
Alexa Fluor 488-conjugated goat anti-mouse IgG (H+L) secondary antibody Invitrogen A10667 2 mg/mL. Diluted 1:1000
Alexa Fluor 568-conjugated goat anti-rabbit IgG (H+L) secondary antibody Invitrogen A11036 2 mg/mL. Diluted 1:1000
Hoechst 33342 Thermo Fisher H3570 10ML 10 mg/mL. Diluted 1:1000
Cover glass 24×24 mm Deltalab D102424
Fluoromount Sigma-Aldrich F4680-25ML
Epifluorescence Microscope Nikon Eclipse E1000 upright microscope with a CCD camera
Confocal Microscope Leica Microsystems Leica SPE Upright Confocal Microscope
ImageJ 1.50g freeware http://imgej.nih.gov/ij
MATLAB software The MATHWORKS, Inc.
OriginPro 8.5 software  OriginLab Coorporation

References

  1. Jiang, F., Hörber, H., Howard, J., Müller, D. J. Assembly of collagen into microribbons: Effects of pH and electrolytes. J. Struct. Biol. 148 (3), 268-278 (2004).
  2. Smith, M. L., et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5 (10), 2243-2254 (2007).
  3. Little, W. C., Smith, M. L., Ebneter, U., Vogel, V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 27 (5), 451-461 (2008).
  4. Christman, K. L., Enriquez-Rios, V. D., Maynard, H. D. Nanopatterning proteins and peptides. Soft Matter. 2, 928-939 (2006).
  5. Falconnet, D., Csucs, G., Grandin, H. M., Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 27 (16), 3044-3063 (2006).
  6. Arnold, M., et al. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem. 5 (3), 383-388 (2004).
  7. Cavalcanti-Adam, E. A., et al. Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur. J. Cell. Biol. 85 (3-4), 219-224 (2006).
  8. Cavalcanti-Adam, E. A., et al. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 92 (8), 2964-2974 (2007).
  9. Arnold, M., et al. Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter. 5 (1), 72-77 (2009).
  10. Malmström, J., et al. Large area protein patterning reveals nanoscale control of focal adhesion development. Nano Lett. 10 (2), 686-694 (2010).
  11. Deeg, J. A., et al. Impact of local versus global ligand density on cellular adhesion. Nano Lett. 11 (4), 1469-1476 (2011).
  12. Medda, R., et al. Investigation of early cell–surface interactions of human mesenchymal stem cells on nanopatterned β-type titanium-niobium alloy surfaces. Interface Focus. 4, 20130046 (2014).
  13. Wang, X., et al. Effect of RGD nanospacing on differentiation of stem cells. Biomaterials. 34 (12), 2865-2874 (2013).
  14. Wang, X., Ye, K., Li, Z. H., Yan, C., Ding, J. D. Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis. 9 (4), 280-286 (2013).
  15. Wang, X., Li, S. Y., Yan, C., Liu, P., Ding, J. D. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 15 (3), 1457-1467 (2015).
  16. Li, Z. H., et al. Effects of RGD nanospacing on chondrogenic differentiation of mesenchymal stem cells. J. Mater. Chem. B. 3 (12), 5197-5209 (2015).
  17. Stephanopoulos, N., et al. Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett. 15 (1), 603-609 (2015).
  18. Rolland, O., Turrin, C. O., Caminade, A. M., Majoral, J. P. Dendrimers and nanomedicine: Multivalency in action. New J. Chem. 33, 1809-1824 (2009).
  19. Saovapakhiran, A., D’Emanuele, A., Attwood, D., Penny, J. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug. Chem. 20 (4), 693-701 (2009).
  20. Albertazzi, L., Fernandez-Villamarin, M., Riguera, R., Fernandez-Megia, E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjug. Chem. 23 (5), 1059-1068 (2012).
  21. Mikhail, A. S., Jones, K. S., Sheardown, H. Dendrimer grafted cell adhesion peptide-modified PDMS. Biotechnol. Prog. 24 (4), 938-944 (2008).
  22. Kino-oka, M., Kim, J., Kurisaka, K., Kim, M. H. Preferential growth of skeletal myoblasts and fibroblasts in co-culture on a dendrimer-immobilized surface. J. Biosci. Bioeng. 115 (1), 96 (2013).
  23. Kim, M. H., et al. Morphological regulation and aggregate formation of rabbit chondrocytes on dendrimer immobilized surfaces with D-glucose display. J. Biosci. Bioeng. 107 (2), 196-205 (2009).
  24. Lomba, M., et al. Cell adhesion on surface patterns generated by the photocrosslinking of hyperbranched polyesters with a trisdiazonium salt. React. Funct. Polym. 73 (3), 499-507 (2013).
  25. Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A., Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113 (Pt 10), 1677-1686 (2000).
  26. Kim, M. H., Kino-oka, M., Kawase, M., Yagi, K., Taya, M. Synergistic effect of D-glucose and epidermal growth factor display on dynamic behaviors of human epithelial cells. J. Biosci. Bioeng. 104 (5), 428-431 (2007).
  27. Pericet-Camara, R., Cahill, B. P., Papastavrou, G., Borkovec, M. Nano-patterning of solid substrates by adsorbed dendrimers. Chem. Commun. 3, 266-268 (2007).
  28. Lagunas, A., et al. Large-scale dendrimer-based uneven nanopatterns for the study of local arginine–glycine–aspartic acid (RGD) density effects on cell adhesion. Nano Res. 7 (3), 399-409 (2014).
  29. Lagunas, A., et al. Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment. Nano Res. , (2017).
  30. Prats-Alfonso, E., et al. Effective and Versatile Strategy for the Total Solid-Phase Synthesis of Alkanethiols for Biological Applications. Eur. J. Org. Chem. 2013 (7), 1233-1239 (2013).
  31. Zhu, Y. B., Gao, C. Y., Liu, X. Y., He, T., Shen, J. C. Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. Tissue Eng. 10 (1-2), 53-61 (2004).
  32. Güell, A., Díez-Pérez, I., Gorostiza, P., Sanz, F. Preparation of reliable probes for electrochemical tunneling spectroscopy. Anal. Chem. 76 (17), 5218-5222 (2004).
  33. Bobick, B. E., Chen, F. H., Le, A. M., Tuan, R. S. Regulation of the chondrogenic phenotype in culture. Birth Defects Res. C Embryo Today. 87 (4), 351-371 (2009).
  34. De Lise, A. M., Fisher, L., Tuan, R. S. Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage. 8 (5), 309-334 (2000).
  35. Kosher, R. A., Kulyk, W. M., Gay, S. W. Collagen gene expression during limb cartilage differentiation. J. Cell Biol. 102 (4), 1151-1156 (1986).
  36. Biebricher, A., Paul, A., Tinnefeld, P., Golzhauser, A., Sauer, M. Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. J. Biotechnol. 112 (1-2), 97-107 (2004).
  37. Tinazli, A., Piehler, J., Beuttler, M., Guckenberger, R., Tampé, R. Native protein nanolithography that can write, read and erase. Nat. Nanotechnol. 2, 220-225 (2007).
  38. Oberhansl, S., et al. Facile Modification of Silica Substrates Provides a Platform for Direct-Writing Surface Click Chemistry. Small. 8 (4), 541-545 (2012).

Play Video

Cite This Article
Casanellas, I., Lagunas, A., Tsintzou, I., Vida, Y., Collado, D., Pérez-Inestrosa, E., Rodríguez-Pereira, C., Magalhaes, J., Gorostiza, P., Andrades, J. A., Becerra, J., Samitier, J. Dendrimer-based Uneven Nanopatterns to Locally Control Surface Adhesiveness: A Method to Direct Chondrogenic Differentiation. J. Vis. Exp. (131), e56347, doi:10.3791/56347 (2018).

View Video