Summary

単一分子蛍光In Situハイブリダイゼーション実験のため個々 の大腸菌細胞の転写物を自動ラベリング手法

Published: December 21, 2017
doi:

Summary

本稿では、蛍光標識 DNA プローブ、エシェリヒア属大腸菌の in situハイブリダイゼーション (smFISH) 実験単一分子蛍光用と個々 のメッセンジャー RNA (mRNA) の成績証明書を表示する方法について説明します。smFISH は、同時検出、ローカリゼーション、および固定の個々 の細胞における mRNA 分子の定量化を可能にする可視化手法です。

Abstract

固定細菌エシェリヒア属大腸菌の in situハイブリダイゼーション (smFISH) 実験単一分子蛍光の使用のための個々 のメッセンジャー RNA (mRNA) の成績証明書をラベル付けアルゴリズムを述べる。smFISH では、興味の遺伝子の mRNA のコピーの数の細胞間の可変性の測定として、転写産物の細胞内局在をことができます。主な手順は、細菌の細胞培養の固定、細胞膜の透過および市販の短い蛍光標識したオリゴヌクレオチド プローブのセットとターゲットの転写産物の交配です。smFISH は、異なる蛍光マーカー間スペクトルの重なりによって課された制限と同じ細胞の複数の遺伝子の転写産物のイメージングを許可できます。下図のプロトコルが完了した後、低輝度蛍光に適したカメラと組み合わせて顕微鏡を用いた細胞が容易にイメージ化します。位相コントラスト フレームの分割細胞膜が染色から得られたセルの輪郭と共に、これらのイメージは、オープン ソースまたはカスタム作成されたソフトウェアを使用して細胞のサンプルの mRNA のコピー数の分布の計算を許可します。ここで説明したラベリング法を確率論的光再建顕微鏡 (嵐) イメージを成績証明書に適用もできます。

Introduction

確率は遺伝子発現の基礎的、やむを得ない面であり、細胞多様性1、両方の成績証明書および蛋白質の2,3レベルに上昇を与えます。明確に定義された条件の下でセル間変動の定量化は、遺伝子の発現とその制御の根底にある基本的なプロセスに、ユニークなウィンドウを提供しています。細菌における細胞多様性の 1 つの重要な源は、転写レベルで行われます。成績証明書番号は、転写、転写プロセス調節などにも確率のためだけではなくを小さな Rna と RNAases2によって異なります。定量的な方法で多様性に直接アクセスする方法の 1 つは、蛍光 smFISH のある特定の遺伝子の個々 の成績証明書を付けることです。この方法では、検出と特定の RNA の分子の細胞内局在性固定、個々 の細菌細胞4をことができます。利息5,6のトラン スクリプトに選択的に結合するように設計、蛍光標識 〜 20 拠点長のオリゴヌクレオチドのセットを持つ Mrna を交配します。複数のラベル付けにより、上記のバック グラウンド蛍光検出と個々 の mRNA 分子は、回折限界のスポットが蛍光顕微鏡7 (参照してください図 1) として表示されます。相補的なオリゴマー プローブが二次蛍光標識した記者のテクニック8を使用して検出されます共役の皮膚 (例えば、ビオチンまたはジゴキシゲニン) を運ぶ mRNA 分子の分類のための他のアプローチがあります。

SmFISH に加えて成績証明書についての定量的な情報を提供する他の方法があります。北など、いくつかのしみまたは量的な PCR の大部分をプローブし従って mRNA のコピーの数も個々 の細胞内での位置を測定できます。これらのメソッドは細胞間変動の定量化に適していません。呼ばれる、細胞内の場所と同様、両方の細胞内 Rna のコピー数の定量誤差に頑健な蛍光の in situハイブリダイゼーション (MERFISH) を多重化できる最近イメージ ベースの技術を開発しました。MERFISH は、蛍光標識したオリゴヌクレオチド プローブの固定数から定義された組み合わせから成る一意のバーコードの割り当てに基づいています。これらのバーコードで読み取られ、smFISH 測定の連続ラウンド、退色と各次の交配、それにより 2 桁の9,10によってスループットの向上のラウンドします。このテクニックは、自動液体処理システムおよびプローブ セットの適切な設計を必要とします。

確率光再建顕微鏡 (嵐)11など小説の超解像技術と個々 のトラン スクリプトの複数蛍光標識の組み合わせにより、十倍の解像度で、転写産物の細胞内局在。嵐、蛍光プローブとイメージングのバッファーの適切な組み合わせは、(点滅) プローブ分子あたりの蛍光性の放出の複数のサイクルをできます。嵐は、大腸菌トランスクリプトームのイメージし、関心12の同時にすべての転写産物の分類によって rna のゲノム広い空間組織を観察にも使えます。

上記のレビューすべての単一細胞方法は固定細胞の転写物をイメージングに基づいています。それ故に、彼らは細胞内での転写産物の動力学的性質に関する情報を提供しません。生きているセル13成績証明書に従う、Mrna を結合部位の配列への興味の遺伝子の融合によるラベルことができます。これらの後者は、バクテリオファージ MS2 のコート蛋白質、緑色蛍光タンパク質 (GFP)10,14,15などの蛍光タンパク質を融合したなどの RNA 結合蛋白質によって認識されます。

ここで大腸菌で特に蛍光標識 DNA プローブ、smFISH 実験で使用するためのセットを個々 の mRNAs をラベリングの手法について述べる。さらに、マイナーな修正と嵐測定用同じラベル付けスキームが紹介します。

Protocol

1. プローブの設計 注: このプロトコルは、すでに fluorophores が付いているタグ付き市販オリゴヌクレオチド プローブを使用します。プローブは、ターゲットに相補的な特定のシーケンスのセットで構成されます mRNA、各プローブの単一蛍光分子に活用されています。また、5,16を他の場所で説明されているようにプローブ、蛍光マ…

Representative Results

SmFISH大腸菌の細胞の galK と sodB の転写物の測定を行った。成績証明書は、単一蛍光分子に共役されて各プローブ ターゲット シーケンスに補足特定のシーケンスのセットで交配させられた (資料の表を参照)。蛍光・位相コントラスト画像 MG1655 野生型の大腸菌の菌株 (WT) または JW0740 (慶應義塾コレクション)19 galK 削除ひずみ (ΔgalK)…

Discussion

当研究室で smFISH メソッド2を使用してE. 大腸菌細胞の異なる遺伝子のコピー数で測定しました。簡単に言えば、この手順は次の手順で構成されています: セル固定、プローブの浸透を可能に膜の透過プローブの交配、そして標準的な蛍光顕微鏡を用いたイメージングのサンプルします。この手順は、いくつかの変更6,7,</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この作品は、(バッハ) にイスラエル科学技術振興財団助成金 514415 と (バッハ) に BSF NSF (MCB) グラント 2016707 によって支えられました。ジークフリートとイルマ ウルマン (バッハ) 教授の椅子はまた認めたからサポートします。

Materials

Dextran sulfate sodium salt Sigma-Aldrich D8906
Pure Ethanol, 99.5%, ACS reagent, absolute Mallinckrodt Baker – Avantor 8025.25
Diethylpyrocarbonate (DEPC) Sigma-Aldrich D5758
RNase-free 20X SSC Life Technologies/Ambion AM9763
RNase-free 10X PBS Life Technologies/Ambion AM9625
TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) BioUltra, for molecular biology Sigma-Aldrich 93283
nuclease-free water Thermo Fisher Scientific 10977035
Formaldehyde solution for molecular biology, 36.5-38% in water Sigma-Aldrich F8775
Deionized formamide, nuclease free Thermo Fisher Scientific/Ambion AM9342
E. coli tRNA (ribonucleic acid, transfer type xx from escherichia) Sigma-Aldrich R1753-500UN
UltraPure BSA (50mg/ml) Thermo Fisher Scientific/Ambion AM2616
Vanadyl-ribonucleoside complex,VRC, 200 mM New England Biolab S1402S
Poly-L-Lysine Sigma P4707
Cysteamine and oxygen Sigma-Aldrich 30070
Glucose Oxidase from Aspergillus niger, Type VII, 50KU Sigma-Aldrich G2133
Catalase Sigma-Aldrich C40
D-glucose Sigma-Aldrich G8270
D-fucose Sigma-Aldrich F8150
Vybrant DiO Cell-Labeling Solution Life Technologies V2286
Agarose,low melting reagent Sigma-Aldrich A9414
Adhesive silicone isolator 24-2mm Dia. X 1.8 mm depth JTR24R-A2-2.0 Grace Bio-Labs JTR24R-A2-2.0 666208
poly-D-lysine-coated glass bottom Glass Bottom Culture Dishes MatTek Corporation P35GC-1.5-14-C
Super life nitrile powder free examination gloves Supermax TC-N-9889
Brand sterilization incubator tape Sigma-Aldrich BR61750
Microcentrifuge tubes (1.8 ml) Axygen – Corning Life Sciences MCT-175C
Falcon round-bottom polypropylene tubes (14 ml) BD Biosciences 352059
Conical-bottom centrifuge polypropylene tubes (50 ml) Corning 430828
Serological pipettes (Corning 5 ml) Corning Life Sciences 4051
Serological pipettes (Corning 10 ml) Corning Life Sciences 4488
Serological pipettes (Corning 25 ml) Corning Life Sciences 4251
Spectrophotometer cuvettes Sarstedt 67.742
RNase-free pipette tips 0.2 – 20 μl FroggaBio FT20
RNase-free pipette tips 10 – 200 μl Axigene/corning TF-200
RNase-free pipette tips 100 – 1000 μl FroggaBio FT1000
RNase-free pipette tips 100 – 1000 μl Sorenson 14200
Syringe disposile 10 mL needle G-21 Becton Dickinson, Biosciences BD-309643
Minisart 0.2 um Syringe Filter Sartorius 16534 K
Nikon instruments microscope type A immersion oil A, 8cc Nikon MXA20233
Microscope slides 76 x26, 3"x1"x1mm Thermo Fisher Scientific 421-004ET
#0 coverslip slide 24×60 Thermo Fisher Scientific/Menzel BNBB024060A0
Orbital shaker M.R.C TOU-50
Hot block M.R.C
Vortex Fried Electric Company G-560-E
Microcentrifuge Eppendorf 5427R
Centrifuge Eppendorf 5810R
Portable Pipet-Aid XP2, Pipette Controller Drummond Scientific Company 4-000-501-I
OD600 Spectrophotometer for Bacterial Growth Rates DiluPhotometer Midsci OD600-10
iXon X3 EMCCD camera Andor DU-897E-CS0-#BV
Eclipse Ti microscope Nikon MEA53100
CFI plan apochromat DM 100X oil objective lambda PH-3 N.A 1.45 WD 0.13 Nikon MRD31905
Filter set (TRITC/CY3): EX – ET545/30X; EM – ET620/60M; BS – T570LP Nikon 49005
Filter set (CY5): EX – ET640/30X; EM – ET690/50M; BS – T660P Nikon 49009
Nis-elements AR auto reaserch software Nikon MQS31000
STORM microscope Vutara SR-200
NA 1.2 water immersion objective Olympus
SRX image acquisition and analysis software Vutara
Evolve 512 EMCCD camera Photometrics
Stellaris® FISH Probes, Custom Assay with CAL Fluor® Red 590 Dye Biosearch Technologies Inc SMF-1083-5
Probe Sequence for galK mRNA:
gtgttttttctttcagactc
tagccaaatgcgttggcaaa
ctgaatggtgtgagtggcag
caccaatcaaattcacgcgg
acgaaaccgtcgttgtagtc
tgataatcaatcgcgcaggg
gtggtgcacaactgatcacg
acgcgaactttacggtcatc
gctgattttcataatcggct
gcatcgagggaaaactcgtc
gttttcatgtgcgacaatgg
cacgccacgaacgtagttag
ttacgcagttgcagatgttt
tccagtgaagcggaagaact
tgctgcaatacggttccgac
gtccagcggcagatgataaa
tgaccgttaagcgcgatttg
agcctacaaactggttttct
gcggaaattagctgatccat
aaggcatgatctttcttgcc
cagtgagcggcaatcgatca
tgggcatggaaactgctttg
gatgatgacgacagccacac
gggtacgtttgaagttactg
gtgttgtattcgctgccaac
ggtttcgcactgttcacgac
tggctgctggaagaaacgcg
ttcaatggtgacatcacgca
catgcgcaacagcgttgaac
ggcgttttcagtcagtatat
atacgtttcaggtcgccttg
tgagactccgccatcaactc
gaaatcatcgcgcatagagg
caatttgcggcacggtgatt
ttgacgatttctaccagagt
acctttgtcgccaatcacag
ggatcagcgcgacgatacag
atattgttcagcgacagctt
gtctctttaatacctgtttt
ctccttgtgatggtttacaa
Stellaris® FISH Probes, Custom Assay with Quaser Fluor® Red 670 Dye Biosearch Technologies Inc SMF-1083-5
Probe Sequence for sodB mRNA:
gtgttttttctttcagactc
tagccaaatgcgttggcaaa
ctgaatggtgtgagtggcag
caccaatcaaattcacgcgg
acgaaaccgtcgttgtagtc
tgataatcaatcgcgcaggg
gtggtgcacaactgatcacg
acgcgaactttacggtcatc
gctgattttcataatcggct
gcatcgagggaaaactcgtc
gttttcatgtgcgacaatgg
cacgccacgaacgtagttag
ttacgcagttgcagatgttt
tccagtgaagcggaagaact
tgctgcaatacggttccgac
gtccagcggcagatgataaa
tgaccgttaagcgcgatttg
agcctacaaactggttttct
gcggaaattagctgatccat
aaggcatgatctttcttgcc
cagtgagcggcaatcgatca
tgggcatggaaactgctttg
gatgatgacgacagccacac
gggtacgtttgaagttactg
gtgttgtattcgctgccaac
ggtttcgcactgttcacgac
tggctgctggaagaaacgcg
ttcaatggtgacatcacgca
catgcgcaacagcgttgaac
ggcgttttcagtcagtatat
atacgtttcaggtcgccttg
tgagactccgccatcaactc
gaaatcatcgcgcatagagg
caatttgcggcacggtgatt
ttgacgatttctaccagagt
acctttgtcgccaatcacag
ggatcagcgcgacgatacag
atattgttcagcgacagctt
gtctctttaatacctgtttt
ctccttgtgatggtttacaa

References

  1. Tsimring, L. S. Noise in biology. Reports Prog. Phys. 77 (2), 26601 (2014).
  2. Arbel-Goren, R., et al. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli. Nucleic Acids Res. 44 (14), 6707-6720 (2016).
  3. Arbel-Goren, R., et al. Effects of post-transcriptional regulation on phenotypic noise in Escherichia coli. Nucleic Acids Res. 41 (9), 4825-4834 (2013).
  4. van Gijtenbeek, L. A., Robinson, A., van Oijen, A. M., Poolman, B., Kok, J. On the Spatial Organization of mRNA, Plasmids, and Ribosomes in a Bacterial Host Overexpressing Membrane Proteins. PLOS Genet. 12 (12), e1006523 (2016).
  5. Raj, A., vanden Bogaard, P., Rifkin, S. A., van Oudenaarden, A., Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods. 5 (10), 877-879 (2008).
  6. Raj, A., Tyagi, S. Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. Methods Enzymol. 472 (10), (2010).
  7. Skinner, S. O., La Sepúlveda, ., Xu, H., Golding, I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 8 (6), 1100-1113 (2013).
  8. Barakat, T. S., Gribnau, J. Combined DNA-RNA fluorescent in situ hybridization (FISH) to study X chromosome inactivation in differentiated female mouse embryonic stem cells. J. Vis. Exp. (88), e51628 (2014).
  9. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S., Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 348 (6233), aaa6090 (2015).
  10. van Gijtenbeek, L. A., Kok, J. Illuminating messengers: An update and outlook on RNA visualization in bacteria. Front. Microbiol. 8, 1-19 (2017).
  11. Fei, J., et al. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science. 347 (6228), 1371-1374 (2015).
  12. Moffitt, J. R., Pandey, S., Boettiger, A. N., Wang, S., Zhuang, X. Spatial organization shapes the turnover of a bacterial transcriptome. Elife. 5, 1-22 (2016).
  13. Ong, W. Q., Citron, Y. R., Sekine, S., Huang, B. Live Cell Imaging of Endogenous mRNA Using RNA-Based Fluorescence “Turn-On” Probe. ACS Chem. Biol. , (2016).
  14. Golding, I., Paulsson, J., Zawilski, S. M., Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell. 123 (6), 1025-1036 (2005).
  15. Golding, I., Cox, E. C. Chapter 8 Spatiotemporal Dynamics in Bacterial Cells: Real-Time Studies with Single-Event Resolution. Methods Cell Biol. 89 (8), (2008).
  16. So, L. H., Ghosh, A., Zong, C., Sepulveda, L. A., Segev, R., Golding, I. General properties of transcriptional time series in Escherichia coli. Nat. Genet. 43 (6), 554-560 (2011).
  17. Spahn, C., Endesfelder, U., Heilemann, M. Super-resolution imaging of Escherichia coli nucleoids reveals highly structured and asymmetric segregation during fast growth. J. Struct. Biol. 185 (3), 243-249 (2014).
  18. Sliusarenko, O. Microbetracker software. Mol Microbiol. 80 (3), 612-627 (2012).
  19. Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 8 (2006).
  20. Arbel-Goren, R., et al. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli. Nucleic Acids Res. 44 (14), 6707-6720 (2016).
  21. Brandt, U. A two-state stabilization-change mechanism for proton-pumping complex I. Biochimica et Biophysica Acta (BBA) – Bioenergetics. 1807 (10), 1364-1369 (2011).
check_url/56600?article_type=t

Play Video

Cite This Article
Arbel-Goren, R., Shapira, Y., Stavans, J. Method for Labeling Transcripts in Individual Escherichia coli Cells for Single-molecule Fluorescence In Situ Hybridization Experiments. J. Vis. Exp. (130), e56600, doi:10.3791/56600 (2017).

View Video