Summary

Adipo-Clear: A Tissue Clearing Method for Three-Dimensional Imaging of Adipose Tissue

Published: July 28, 2018
doi:

Summary

Due to the high lipid content, adipose tissue has been challenging to visualize using traditional histological methods. Adipo-Clear is a tissue clearing technique that allows robust labeling and high-resolution volumetric fluorescent imaging of adipose tissue. Here, we describe the methods for sample preparation, pretreatment, staining, clearing, and mounting for imaging.

Abstract

Adipose tissue plays a central role in energy homeostasis and thermoregulation. It is composed of different types of adipocytes, as well as adipocyte precursors, immune cells, fibroblasts, blood vessels, and nerve projections. Although the molecular control of cell type specification and how these cells interact have been increasingly delineated, a more comprehensive understanding of these adipose-resident cells can be achieved by visualizing their distribution and architecture throughout the whole tissue. Existing immunohistochemistry and immunofluorescence approaches to analyze adipose histology rely on thin paraffin-embedded sections. However, thin sections capture only a small portion of tissue; as a result, the conclusions can be biased by what portion of tissue is analyzed. We have therefore developed an adipose tissue clearing technique, Adipo-Clear, to permit comprehensive three-dimensional visualization of molecular and cellular patterns in whole adipose tissues. Adipo-Clear was adapted from iDISCO/iDISCO+, with specific modifications made to completely remove the lipid stored in the tissue while preserving native tissue morphology. In combination with light-sheet fluorescence microscopy, we demonstrate here the use of the Adipo-Clear method to obtain high-resolution volumetric images of an entire adipose tissue.

Introduction

Until recently, adipose tissue was conceived of as an amorphous collection of fat cells. Over the past few decades, our understanding has grown more sophisticated, with fat now recognized to be a complex organ containing different types of adipocytes, as well as adipocyte precursors, immune cells, fibroblasts, the vasculature, and nerve projections. Interactions among these adipose-resident cells have pronounced effects on adipose tissue and organismal physiology and pathophysiology1. Although emerging studies have unraveled important molecular mechanisms underlying certain interactions, a more comprehensive understanding requires reliable structural profiling of the entire tissue in three dimensions (3D).

Our current knowledge of adipose tissue morphology is largely based on histological analysis of thin sections (5 μm) with relatively high-magnification imaging (more than 10X)2,3. However, this approach has several significant limitations. First, intricate filamentous structures such as sympathetic nerves and the vasculature, which are known to play important roles in adipose function4,5,6,7, are difficult to evaluate through thin sections. Second, due to its seemingly amorphous shape and the lack of representative structural units to focus on, it is difficult to appreciate adipose tissue structures based only on section staining. Third, adipose tissue has a very high lipid content, creating challenges in obtaining consistent serial sections that are suitable for 3D anatomical reconstruction, a conventional method used to study whole brain morphology8. Given these factors, there is a great need for a whole-mount approach that can provide 3D visualization of an entire adipose depot while still achieving cellular resolution.

3D volumetric imaging of an entire organ is challenging due to the obscuring effects of light scatter. A major source of light scatter in biological tissues comes from lipid-aqueous interfaces. Although the efforts to eliminate scatter by removing lipids have been ongoing for over a century, there have been a large number of recent innovations9. One such newly developed tissue-clearing method is immunolabeling-enabled 3D imaging of solvent-cleared organs (iDISCO/iDISCO+)10,11. However, adipose tissue presents a particular challenge given its high level of lipids, and therefore, additional modifications to the iDISCO/iDISCO+ protocol are required to fully extract the lipids while protecting the tissue from collapsing. The modified protocol we have developed, now called Adipo-Clear, employs methanol/dichloromethane-based delipidation of adipose tissue to achieve optimal transparency suitable for high-resolution volumetric imaging12. Because the delipidation step largely quenches endogenously expressed fluorescent proteins such as GFP and RFP, visualization of such proteins must be achieved by immunolabeling. Overall, this simple and robust protocol can be applied to study tissue-level organization of adipose-resident cells, lineage tracing of adipocyte progenitor cells, and adipose morphogenesis during development.

Protocol

Animal care and experimentation were performed according to procedures approved by the Institutional Animal Care and Use Committee at the Rockefeller University. 1. Tissue Preparation Perform standard intracardiac perfusion with ~20 mL of 1x phosphate buffered saline (PBS) at 4 °C until the blood is completely removed from the tissue. Switch the perfusate to ~20 mL of fixative solution (4% paraformaldehyde (PFA) in 1x PBS) at 4 °C until the neck and tail have si…

Representative Results

Adipo-Clear prepared whole fat pads can be imaged in 3D to analyze how tissue morphology and cellular interactions are affected in the lean and obese states. This method can be easily applied to analyze general adipose structure by collecting the tissue autofluorescence signal in the green channel. We have previously shown that the autofluorescence signal in adipose overlays favorably with perilipin staining, a commonly used marker to outline mature adipocytes12. F…

Discussion

Adipo-Clear is a straightforward and robust method for clearing adipose tissue, which can be easily performed in a regular lab setup. In comparison to other solvent-based clearing methods such as iDISCO/iDISCO+10,11,12, Adipo-Clear is particularly optimized for clearing adipose tissue and other tissue with high fat content. The delipidation step completely removes lipids from adipose, and therefore facilitates immunolabeling thr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Christina Pyrgaki, Tao Tong, and Alison North from the Bioimaging Resource Center at the Rockefeller University for assistance and support. We also thank Xiphias Ge Zhu for movie editing. This work was supported by the Human Frontier Science Program Organization (PC).

Materials

1x phosphate buffered saline Corning 21-040-CV
Paraformaldehyde Sigma Aldrich P6148-1KG
Methanol Fisher Scientific A412SK-4
Triton X-100 Sigma Aldrich X100-500ML
Tween 20 Sigma Aldrich P2287-500ML
Heparin Sigma Aldrich H3393-100KU
Dichloromethane Sigma Aldrich 270991
Hydrogen peroxide 30% Fisher Scientific 325-100
Benzyl ether Sigma Aldrich 108014
Agarose Invitrogen 16500500
Sodium azide Sigma Aldrich 71289-5G
Glycine Fisher Scientific BP381-1
Rabbit polyclonal anti-Tyrosine Hydroxylase Millipore AB152 1:200 dilution
Goat polyclonal anti-CD31/PECAM-1 R&D Systems AF3628 Final concentration of 2 µg/mL
Rat monoclonal anti-CD68, Clone FA-11 Bio-Rad MCA1957 Final concentration of 2 µg/mL
Donkey anti-rabbit IgG (H+L) Alexa Fluor 647 Jackson ImmunoResearch 711-605-152 Final concentration of 5-10 µg/mL
Donkey anti-goat IgG (H+L) Alexa Fluor 568 Invitrogen A11077 Final concentration of 5-10 µg/mL
Donkey anti-rat IgG (H+L) Alexa Fluor 647 Jackson ImmunoResearch 712-605-153 Final concentration of 5-10 µg/mL
Imaging chamber ibidi 80287
Light sheet microscope LaVision BioTec Ultramicroscope II
Imaging software LaVision BioTec Imspector software
Microscopy visualization software Bitplane Imaris

References

  1. Rosen, E. D., Spiegelman, B. M. What We Talk About When We Talk About Fat. Cell. 156 (1-2), 20-44 (2014).
  2. Barbatelli, G., et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology – Endocrinology and Metabolism. 298 (6), E1244-E1253 (2010).
  3. Wang, Q. A., Tao, C., Gupta, R. K., Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine. 19 (10), 1338-1344 (2013).
  4. Bartness, T. J., Liu, Y., Shrestha, Y. B., Ryu, V. Neural innervation of white adipose tissue and the control of lipolysis. Frontiers in Neuroendocrinology. 35 (4), 473-493 (2014).
  5. Morrison, S. F., Madden, C. J., Tupone, D. Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure. Cell Metabolism. 19 (5), 741-756 (2014).
  6. Xue, Y., et al. Hypoxia-Independent Angiogenesis in Adipose Tissues during Cold Acclimation. Cell Metabolism. 9 (1), 99-109 (2009).
  7. Shimizu, I., et al. Vascular rarefaction mediates whitening of brown fat in obesity. The Journal of Clinical Investigation. 124 (5), 2099-2112 (2014).
  8. Abe, H., et al. 3D reconstruction of brain section images for creating axonal projection maps in marmosets. Journal of Neuroscience Methods. 286, 102-113 (2017).
  9. Richardson, D. S., Lichtman, J. W. Clarifying Tissue Clearing. Cell. 162 (2), 246-257 (2015).
  10. Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P., Tessier-Lavigne, M. iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging. Cell. 159 (4), 896-910 (2014).
  11. Renier, N., et al. Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell. 165 (7), 1789-1802 (2016).
  12. Chi, J., et al. Three-Dimensional Adipose Tissue Imaging Reveals Regional Variation in Beige Fat Biogenesis and PRDM16-Dependent Sympathetic Neurite Density. Cell Metabolism. 27 (1), 226-236 (2018).
  13. Khan, T., et al. Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI. Molecular and Cellular Biology. 29 (6), 1575-1591 (2009).
  14. Croce, A. C., Bottiroli, G. Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis. European Journal of Histochemistry EJH. 58 (4), (2014).
  15. Oh, D. Y., Morinaga, H., Talukdar, S., Bae, E. J., Olefsky, J. M. Increased Macrophage Migration Into Adipose Tissue in Obese Mice. Diabetes. 61 (2), 346-354 (2012).
  16. Cinti, S., et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of Lipid Research. 46 (11), 2347-2355 (2005).
  17. Wang, W., Seale, P. Control of brown and beige fat development. Nature Reviews Molecular Cell Biology. 17 (11), 691-702 (2016).
check_url/58271?article_type=t

Play Video

Cite This Article
Chi, J., Crane, A., Wu, Z., Cohen, P. Adipo-Clear: A Tissue Clearing Method for Three-Dimensional Imaging of Adipose Tissue. J. Vis. Exp. (137), e58271, doi:10.3791/58271 (2018).

View Video