Summary

构建人主动脉平滑肌细胞器官芯片模型,用于概括主动脉壁中的生物力学应变

Published: July 06, 2022
doi:

Summary

在这里,我们开发了一种人主动脉平滑肌细胞器官芯片模型,以复制人主动脉壁中平滑肌细胞的 体内 生物力学应变。

Abstract

传统的二维细胞培养技术和动物模型已用于人胸主动脉瘤和夹层(TAAD)的研究。然而,人类TAAD有时不能用动物模型来表征。临床人体研究和动物实验之间存在明显的物种差距,这可能会阻碍治疗药物的发现。相比之下,传统的细胞培养模型无法模拟 体内 生物力学刺激。为此,微细加工和微流体技术近年来有了长足的发展,为建立复制生物力学微环境的芯片类器官模型提供了新技术。在这项研究中,开发了人主动脉平滑肌细胞器官芯片(HASMC-OOC)模型来模拟主动脉生物力学的病理生理参数,包括人主动脉平滑肌细胞(HASMC)经历的周期性应变的幅度和频率在TAAD中起至关重要的作用。在该模型中,HASMC的形态在形状上变得细长,垂直于应变方向对齐,并且在应变条件下呈现比静态常规条件下更具收缩性的表型。这与天然人主动脉壁中的细胞取向和表型一致。此外,使用二叶式主动脉瓣相关TAAD(BAV-TAAD)和三尖瓣主动脉瓣相关TAAD(TAV-TAAD)患者来源的原发性HASMC,我们建立了BAV-TAAD和TAV-TAAD疾病模型,这些模型复制了TAAD中的HASMC特征。HASMC-OOC模型提供了一个与动物模型互补的新型 体外 平台,用于进一步探索TAAD的发病机制和发现治疗靶点。

Introduction

胸主动脉瘤和夹层 (TAAD) 是主动脉壁的局部扩张或分层,与高发病率和死亡率有关1。人主动脉平滑肌细胞(HASMC)在TAAD的发病机制中起着至关重要的作用。HASMC不是终末分化的细胞,HASMC保持高可塑性,允许它们响应不同的刺激切换表型2。HASMCs在 体内主要受到节律性拉伸应变,这是调节平滑肌形态变化、分化和生理功能的关键因素之一34。因此,循环应变在HASMCs研究中的作用不容忽视。然而,传统的2D细胞培养物无法复制HASMC在 体内经历的循环菌株的生物力学刺激。此外,动物TAAD模型的构建不适用于某些类型的TAAD,例如二叶式主动脉瓣(BAV)相关的TAAD。此外,临床人体研究与动物实验之间的物种差距也不容忽视。它阻碍了临床实践中的药物翻译。因此,在主动脉疾病的研究中迫切需要更复杂的生理系统来模拟 体内 生物力学环境。

用于生物医学研究和药物开发的动物实验成本高昂,耗时且在道德上存在问题。此外,动物研究的结果经常无法预测在人体临床试验中获得的结果56。缺乏人类临床前模型和临床试验中的高失败率导致临床有效药物很少,这增加了医疗保健成本7。因此,迫切需要寻找其他实验模型来补充动物模型。近年来,微细加工和微流控技术得到了长足的发展,为建立类器官芯片模型提供了新技术,弥补了传统2D细胞培养技术的缺点,并为生理研究和药物开发建立了更现实、低成本和高效的体外模型。使用微流体装置,建立器官芯片,在具有不同刺激的微米大小的腔室中培养活细胞,以复制组织或器官的关键功能。该系统由单个或多个微流体微通道组成,其中一种细胞在灌注室中培养,复制一种组织类型的功能,或者在多孔膜上培养不同的细胞类型以重建不同组织之间的界面。基于微流控的类器官与患者来源的细胞相结合,具有弥合小鼠和人类疾病模型之间巨大物种差异的独特优势,并克服了传统2D细胞培养在疾病机制研究和药物发现方面的缺点。随着过去几年微流控技术的快速发展,研究人员已经意识到体器官芯片(OOC)模型复制复合体内生物学参数的有用性8。这些微流体类器官模拟体外生物力学环境,如循环应变、剪切应力和液体压力,提供三维 (3D) 细胞培养环境。迄今为止,已经建立了几个OOC模型来模拟肺9,肾脏10,肝脏11,肠12和心脏13等器官的生物力学刺激但这些模型尚未广泛应用于人类主动脉疾病的研究。

在这项研究中,我们提出了一种人主动脉平滑肌细胞器官芯片(HASMC-OOC)模型,该模型可以控制应用于TAAD患者来源的原发性HASMC的仿生机械力和节律。该芯片由蚀刻有通道的三层聚二甲基硅氧烷(PDMS)厚板和两个商业化的高柔性PDMS膜组成。HASMC在PDMS膜上培养。芯片中间的通道充满了用于细胞培养的培养基。芯片的顶部和底部通道连接到真空压力供应系统,该系统可以控制PDMS膜机械拉伸应变的节奏和频率。HASMC所经历的节律应变可以在HASMC-OOC中模拟,复制传统2D培养系统无法实现的组织或器官的生物力学微环境。利用高分辨率、实时成像和生物力学微环境的优势,可以研究活细胞的生化、遗传和代谢活性,用于组织发育、器官生理学、疾病病因、分子机制和生物标志物鉴定、心血管疾病和主动脉疾病。结合组织特异性和患者细胞,该系统可用于药物筛选、个性化医疗和毒性测试。该HASMC-OOC模型为研究主动脉疾病的发病机制提供了一个新颖的 体外 平台。

Protocol

经复旦大学伦理委员会中山医院批准,采用人主动脉标本进行原发性HASMC分离。B2020-158)。从复旦大学附属中山医院行升主动脉手术的患者中采集主动脉标本。参与前获得所有患者的书面知情同意。 1.原发性人主动脉平滑肌细胞分离 用无菌PBS清洗升主动脉的右侧区域,1x-2x。 用两个眼科镊子去除组织的内膜和外膜层,并保留培养基层以收获细胞。</…

Representative Results

HASMC-OOC模型由真空控制系统、循环系统和PDMS芯片以及HASMC-OOC模型的原理图设计组成(图1)。真空控制系统由真空泵、电磁阀和 PLC 控制器组成。为了充当循环系统,使用蠕动泵来更新细胞培养基并添加药物。PDMS芯片由两个真空室和一个充满SMCM的中间室组成,用于细胞生长。根据芯片结构设计,制备PMMA模具,将3块PDMS板坯倒入模具中,在70 °C交联2 h。用血浆处理后,将三个P…

Discussion

随着微流控技术的快速发展,近年来出现了可以在体外复制一个或多个器官的生物学功能和结构的OOC模型,用于生物学,医学和药理学15。OOC可以模拟人体生理微环境的关键功能,对于探索疾病机制和促进临床前药物翻译至关重要816。虽然OOC仍处于早期阶段,需要更多的投入来优化OOC的设计,但近年来已经取得了很大进展<sup c…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者承认,这项工作得到了上海市科学技术委员会(20ZR1411700)、国家自然科学基金(81771971)和上海帆船计划(22YF1406600)的资助。

Materials

4% paraformaldehyde Beyotime P0099-100ml Used for cell immobilization
Alexa Fluor 350-labeled Goat Anti-Rabbit IgG Beyotime A0408 Antibodies used for immunostaining
Bovine serum albumin Beyotime ST025-20g
Calcium AM/PI Invitrogen L3224
Cell culture flask  Corning 430639
CNN1 Abcam  Ab46794
Commercial flexible
PDMS membrane
Hangzhou Bald Advanced Materials KYQ-200
F-actin Invitrogen R415
FBS Sigma M8318
Hoses Runze Fluid 96410 1 mm inner diameter; 3 mm outer diameter; 1 mm wall thickness; Official website address: https://www.runzefluidsystem.com
Human aortic smooth
muscle cell line CRL1999
ATCC Lot Number:70019189
Image J Imagej.net/fiji/downloads Free Download: https://fiji.sc Imaging platform that is used to identify fluorescence intensity
Incubator Thermo Fisher Scientific Ensures that the temperature,
humidity, and light exposure is
exactly the same throughout
experiment.
Luer Runze Fluid RH-M016 Official website address: https://www.runzefluidsystem.com.
Microscope Olympus
mouse collagen Sigma C7661
Oxygen plasma  Changzhou Hongming Instrument HM-Plasma5L
Pasteur pipette Biologix 30-0138A1
PBS Beyotime C0221A
Pen-Strep Sigma P4458-100ml Antibiodics used to prevent bacterial
contamination of cells during culture.
peristaltic pump Kamoer F01A-STP-B046
Petri dish Corning 430167
PLC controller Zhejiang Jun Teng (BenT) CNC factory BR010-11T8X2M The detailed program setting can be found in supplementary. Official website address: files.http://www.btcnc.net
polydimethylsiloxane (PDMS) Dow Corning Sylgard 184
SM22 Abcam  ab14106
SMCM ScienCell Cat 1101
solenoid valve SMC (China) VQZ300
Syringe Becton,Dickinson and Company 300841
Triton-X 100 Beyotime ST795 To penetrate cell membranes
Trizol Invitrogen 10296010 Used for RNA extraction
trypsin Sigma 15400054
vacuum filter SMC (China) ZFC5-6 Official website address: https://www.smc.com.cn
vacuum pump Kamoer KVP15-KL-S
vacuum regulator AirTAC GVR-200-06
Primers
Primer Name Forward (5’ to 3’) Reverse (5’ to 3’)
SM22 CCGTGGAGATCCCAACTGG CCATCTGAAGGCCAATGACAT
CNN1 CTCCATTGACTCGAACGACTC CAGGTCTGCGAAACTTCTTAGA

References

  1. Olsson, C., Thelin, S., Ståhle, E., Ekbom, A., Granath, F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 114 (24), 2611-2618 (2006).
  2. van Varik, B. J., et al. Mechanisms of arterial remodeling: lessons from genetic diseases. Frontiers in Genetics. 3 (290), 1-10 (2012).
  3. Halka, A. T., et al. The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovascular Pathology. 17 (2), 98-102 (2008).
  4. Wang, Y., et al. Arterial wall stress induces phenotypic switching of arterial smooth muscle cells in vascular remodeling by activating the YAP/TAZ signaling pathway. Cellular Physiology and Biochemistry. 51 (2), 842-853 (2018).
  5. Fabre, K., et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab on a Chip. 20, 1049-1057 (2020).
  6. Golding, H., Khurana, S., Zaitseva, M. What is the predictive value of animal models for vaccine efficacy in humans? The importance of bridging studies and species-independent correlates of protection. Cold Spring Harbor Perspectives in Biology. 10 (4), 028902 (2018).
  7. Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nature Reviews. Genetics. 25, 1-25 (2022).
  8. Niu, L., et al. Microfluidic chip for odontoblasts in vitro. ACS Biomaterials Science & Engineering. 5 (9), 4844-4851 (2019).
  9. Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662-1668 (2010).
  10. Musah, S., et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nature Biomedical Engineering. 1 (69), 1-25 (2017).
  11. Yoon No, D., Lee, K. H., Lee, J., Lee, S. H. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab on a Chip. 15 (19), 3822-3837 (2015).
  12. Bein, A., et al. Microfluidic organ-on-a-chip models of human intestine. Cellular and Molecular Gastroenterology and Hepatology. 5 (4), 659-668 (2018).
  13. Jastrzebska, E., Tomecka, E., Jesion, I. Heart-on-a-chip based on stem cell biology. Biosensors & Bioelectronics. 75 (1), 67-81 (2016).
  14. Rensen, S. S., Doevendans, P. A., van Eys, G. J. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Netherlands Heart Journal. 15 (3), 100-108 (2007).
  15. Perestrelo, A. R., Águas, A. C., Rainer, A., Forte, G. Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors. 15 (12), 31142-31170 (2015).
  16. Liu, Y., et al. Construction of cancer-on-a-chip for drug screening. Drug Discovery Today. 26 (8), 1875-1890 (2021).
  17. Yang, Q., et al. Design of organ-on-a-chip to improve cell capture efficiency. International Journal of Mechanical Sciences. 209, 106705 (2021).
  18. Yang, Q., Lian, Q., Xu, F. Perspective: Fabrication of integrated organ-on-a-chip via bioprinting. Biomicrofluidics. 11 (3), 031301 (2017).
  19. Mohammed, M. I., et al. Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer. Journal of Micromechanics and Microengineering. 27 (1), 015021 (2017).
  20. Tsao, C. W. Polymer microfluidics: Simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines. 7 (12), 225-236 (2016).
  21. Kirschbaum, S. E., Baeumner, A. J. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Analytical and Bioanalytical Chemistry. 407 (14), 3911-3926 (2015).
  22. Stefanadis, C., et al. Pressure-diameter relation of the human aorta. A new method of determination by the application of a special ultrasonic dimension catheter. Circulation. 92 (8), 2210-2219 (1995).
  23. Williams, B. Mechanical influences on vascular smooth muscle cell function. Journal of Hypertension. 16 (12), 1921-1929 (1998).
  24. Abudupataer, M., et al. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease. eLife. 10, 69310 (2021).
  25. Poussin, C., et al. 3d human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow – application in systems toxicology. Altex. 1, 47-63 (2020).
  26. Yasotharan, S., Pinto, S., Sled, J. G., Bolz, S., Gunther, A. Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function. Lab on a Chip. 15, 2660-2669 (2015).

Play Video

Cite This Article
Abudupataer, M., Yin, X., Xiang, B., Chen, N., Yan, S., Zhu, S., Ming, Y., Liu, G., Zhou, X., Lai, H., Wang, C., Zhu, K., Li, J. Construction of a Human Aorta Smooth Muscle Cell Organ-On-A-Chip Model for Recapitulating Biomechanical Strain in the Aortic Wall. J. Vis. Exp. (185), e64122, doi:10.3791/64122 (2022).

View Video