Summary

斯普拉格道利大鼠脂肪组织间充质干细胞的分离和鉴定

Published: April 07, 2023
doi:

Summary

该协议描述了从Sprague Dawley大鼠中分离和鉴定脂肪组织来源的间充质干细胞(MSCs)的方法。

Abstract

近几十年来,成人间充质细胞彻底改变了分子和细胞生物学。它们可以分化成不同的特化细胞类型,此外还有强大的自我更新、迁移和增殖能力。脂肪组织是间充质细胞侵入性最小、最容易获得的来源之一。据报道,与其他来源相比,它具有更高的产量,以及优越的免疫调节特性。最近,已经发表了从不同组织来源和动物物种获得成年间充质细胞的不同程序。在评估了一些作者的标准后,我们标准化了一种适用于不同目的且易于复制的方法。来自肾周和附睾脂肪组织的基质血管分数(SVF)池使我们能够开发具有最佳形态和功能的原代培养物。观察到细胞粘附在塑料表面上24小时,并表现出成纤维细胞样形态,具有延长和形成集落的趋势。流式细胞术(FC)和免疫荧光(IF)技术用于评估膜标志物CD105,CD9,CD63,CD31和CD34的表达。脂肪来源的干细胞(ASCs)分化成成脂肪谱系的能力也使用多种因素(4μM胰岛素,0.5mM 3-甲基异丁基黄嘌呤和1μM地塞米松)进行评估。48小时后,观察到成纤维细胞样形态逐渐丧失,并且在12天时,确认存在对油红色染色阳性的脂滴。总之,提出了一种程序来获得最佳和功能性ASC培养物以应用于再生医学。

Introduction

间充质干细胞(MSCs)因其自我更新,增殖,迁移和分化为不同细胞谱系的高能力而强烈影响再生医学12。目前,大量的研究集中在它们治疗和诊断各种疾病的潜力上。

间充质细胞有不同的来源:骨髓、骨骼肌、羊水、毛囊、胎盘和脂肪组织等。它们是从不同的物种获得的,包括人类、小鼠、大鼠、狗和马3.骨髓来源的间充质干细胞(BMSC)多年来一直被用作再生医学中干细胞的主要来源,并作为胚胎干细胞使用的替代品4。然而,脂肪来源的MSCs或脂肪来源的干细胞(ASCs)是一种重要的替代品,由于其易于收集和分离,以及每克脂肪组织获得的细胞产量5,6具有很大的优势。据报道,ASC的收获率普遍高于BMSCs7。最初提出ASC的修复/再生能力是由于它们分化成其他细胞谱系的能力8。然而,近年来的研究加强了ASC释放的旁分泌因子在其修复潜力中的主要作用910

脂肪组织(AT)除了作为能量储备外,还与内分泌,神经和心血管系统相互作用。它还参与出生后的生长发育、维持组织稳态、组织修复和再生。AT 由脂肪细胞、血管平滑肌细胞、内皮细胞、成纤维细胞、单核细胞、巨噬细胞、淋巴细胞、前脂肪细胞和 ASC 组成。后者由于其低免疫原性而在再生医学中具有重要作用1112。ASC可以通过酶消化和机械加工或通过脂肪组织外植体获得。ASC的原代培养物易于维持、生长和扩增。通过使用免疫荧光和流式细胞术等方法评估特定膜标志物的表达,ASC 的表型表征对于验证细胞的身份至关重要13.国际脂肪治疗与科学联合会(IFATS)和国际细胞治疗学会(ISCT)已经定义ASC表达CD73,CD90和CD105,而缺乏CD11b,CD14,CD19,CD45和HLA-DR14的表达。因此,这些阳性和阴性标志物被认为对ASC的表征是可靠的。

该项目的重点是描述从大鼠AT中提取的成年间充质细胞的分离和鉴定程序,因为与胚胎干细胞不同,这种细胞来源不存在伦理挑战。这巩固了该程序作为可行选择的地位,因为与骨髓来源的干细胞相比,该方法易于访问和微创方法。

来自这种组织来源的间充质细胞因其免疫调节能力和低免疫排斥反应而在再生医学中起着重要作用。因此,本研究是未来研究其分泌组及其在不同疾病(包括糖尿病等代谢性疾病)中作为再生疗法应用的基础部分。

Protocol

所有实验程序均按照墨西哥动物护理指南进行,该指南基于国际实验动物护理评估和认证协会(墨西哥官方规范NOM-062-200-1999,墨西哥)的建议。该协议由墨西哥社会研究所健康研究伦理委员会审查、批准和注册 (R-2021-785-092)。 1.通过手术切除从大鼠身上去除脂肪组织 用 20 mL 无菌 1x 磷酸盐缓冲盐水-抗生素抗真菌剂 (PBS-AA) 溶液(1 x PBS、庆大霉素 [20 μ…

Representative Results

脂肪组织取自3-4个月大的成年Sprague Dawley大鼠,体重为401±41g(几何平均值±SD)。附睾和肾周脂肪组织的平均值为3.8g对应于15次实验提取的分析。培养24小时后,细胞群仍然粘附在塑料表面上并表现出异质形态。第一次传代在8±2天实现,在总共8个实验中±0.6 x 106 个细胞的产量为1.4。直接明场观察(图1)和苏木精-伊红染色(图2)有助于用光学?…

Discussion

自发现间充质干细胞以来的过去四十年中,几组研究人员已经描述了从不同组织和物种获得间充质干细胞的程序。使用大鼠作为动物模型的优点之一是它们易于维护和快速发育,以及易于从脂肪组织获得MSC。已经描述了用于获得ASC的不同组织来源,例如内脏,肾周,附睾和皮下脂肪121314,1516。…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢墨西哥社会保障研究所(IMSS)和墨西哥儿童医院,Federico Gomez(HIMFG)和IMSS研究协调的Bioterio工作人员为开展该项目提供的支持。我们感谢国家科学技术委员会提供的AOC(815290)奖学金和安东尼奥·杜阿尔特·雷耶斯在视听材料方面的技术支持。

Materials

Amphotericin B HyClone SV30078.01
Analytical balance Sartorius AX224
Antibody anti- CD9 (C-4) Santa Cruz Sc-13118
Antibody anti-CD34 (C-18) Santa Cruz Sc-7045
Antibody anti-C63 Santa Cruz Sc-5275
Antibody anti-Endoglin/CD105 (P3D1) Alexa Fluor 594 Santa Cruz Sc-18838A594
Antibody anti-CD31/PECM-1 Alexa Fluor 680 Santa Cruz Sc-18916AF680
Antibody Goat anti-rabitt IgG (H+L) Cy3 Novus NB 120-6939
Antibody Donkey anti-goat IgG (H+L) DyLight 550 Invitrogen SA5-10087
Antibody anti-mouse IgG FITC conjugated goat F (ab´) RD Systems. No. F103B
Bottle Top Filter Sterile CORNING 10718003
Cell and Tissue Culture Flasks BIOFIL 170718-312B
Cell Counter Bright-Line Hemacytometer with cell counting chamber slides SIGMA Aldrich Z359629
Cell wells: 6 well with Lid CORNING 25810
Centrifuge conical tubes HeTTICH ROTANA460R
Centrifuge eppendorf tubes Fischer Scientific M0018242_44797
Collagen IV Worthington LS004186
Cryovial SPL Life Science 43112
Culture tubes Greiner Bio-One 191180
CytExpert 2.0 Beckman Coulter Free version
CytoFlex LX cytometer Beckman Coulter FLOW-2463VID03.17
DMEM GIBCO 31600-034
DMSO SIGMA Aldrich 67-68-5
DraQ7 Dye Thermo Sc. D15106
EDTA SIGMA Aldrich 60-00-4
Eosin yellowish Hycel 300
Ethanol 96% Baker 64-17-5
Falcon tubes 15 mL Greiner Bio-One 188271
Falcon tubes 50 mL Greiner Bio-One 227261
Fetal Bovine Serum CORNING 35-010-CV
Gelatin SIGMA Aldrich 128111163
Gentamicin GIBCO 15750045
Glycerin-High Purity Herschi Trading 56-81-5
Hematoxylin AMRESCO 0701-25G
Heracell 240i CO2 Incubator Thermo Sc. 50116047
Ketamin Pet (Ketamine clorhidrate) Aranda SV057430
L-Glutamine GIBCO/ Thermo Sc. 25030-081
LSM software Zen 2009 V5.5 Free version
Biological Safety Cabinet Class II NuAire 12082100801
Epifluorescent microscope Zeiss Axiovert 100M 21.0028.001
Inverted microscope Olympus CK40 CK40-G100
Non-essential amino acids 100X GIBCO 11140050
Micro tubes 2 mL Sarstedt 72695400
Micro tubes 1,5 mL Sarstedt 72706400
Micropipettes 0.2-2 μL Finnpipette E97743
Micropipettes 2-20 μL Finnpipette F54167
Micropipettes 20-200 μL Finnpipette G32419
Micropipettes 100-1000 μL Finnpipette FJ39895
Nitrogen tank liquid Taylor-Wharton 681-021-06
Paraformaldehyde SIGMA Aldrich SLBC3029V
Penicillin / Streptomycin GIBCO/ Thermo Sc. 15140122
Petri dish Cell culture CORNING Inc 480167
Pipet Tips Axygen Scientific 301-03-201
Pisabental (pentobarbital sodium) PISA Agropecuaria Q-7833-215
Potassium chloride J.T.Baker 7447-40-7
Potassium Phosphate Dibasic J.T Baker 2139900
S1 Pipette Fillers Thermo Sc 9531
Serological pipette 5 mL PYREX L010005
Serological pipette 10 mL PYREX L010010
Sodium bicarbonate J.T Baker 144-55-8
Sodium chloride J.T.Baker 15368426
Sodium Phosphate Dibasic Anhydrous J.T Baker 7558-79-4
Sodium pyruvate GIBCO BRL 11840-048
Syringe Filter Sterile CORNING 431222
Spectrophotometer PerkinElmer Lambda 25 L6020060
Titer plate shaker LAB-LINE 1250
Transfer pipets Samco/Thermo Sc 728NL
Trypan Blue stain GIBCO 1198566
Trypsin From Porcine Pancreas SIGMA Aldrich 102H0234
Tween 20 SIGMA Aldrich 9005-64-5
Universal Blocking Reagent 10x BioGenex HK085-GP
Xilapet 2% (xylazine hydrochloride) Pet's Pharma Q-7972-025

References

  1. Djian, P., Roncari, A. K., Hollenberg, C. H. Influence of anatomic site and age on the replication and differentiation of rat adipocyte precursors in culture. The Journal of Clinical Investigation. 72 (4), 1200-1208 (1983).
  2. Greenwood, M. R., Hirsch, J. Postnatal development of adipocyte cellularity in the normal rat. Journal of Lipid Research. 15 (5), 474-483 (1974).
  3. González, M. . Engineering of the cartilage tissue: application of mesenchymal stem cells derived from adipose tissue and bone marrow for use in cartilage tissue regeneration. , (2014).
  4. Oedayrajsingh-Varma, M. J., et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 8 (2), 166-177 (2006).
  5. Sherman, L. S., Conde-Green, A., Naaldijk, Y., Lee, E. S., Rameshwar, P. An enzyme-free method for isolation and expansion of human adipose-derived mesenchymal stem cells. Journal of Visualized Experiments. (154), e59419 (2019).
  6. Cowan, C. M., et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nature Biotechnology. 22 (5), 560-567 (2004).
  7. Alstrup, T., Eijken, M., Bohn, A. B., Moller, B., Damsgaard, T. E. Isolation of adipose tissue-derived stem cells: enzymatic digestion in combination with mechanical distortion to increase adipose tissue-derived stem cell yield from human aspirated fat. Current Protocols in Stem Cell Biology. 48 (1), 68 (2019).
  8. Gittel, C., et al. Isolation of equine multipotent mesenchymal stromal cells by enzymatic tissue digestion or explant technique: comparison of cellular properties. BMC Veterinary Research. 9, 221 (2013).
  9. Aliborzi, G., Vahdati, A., Mehrabani, D., Hosseini, S. E., Tamadon, A. Isolation, characterization and growth kinetic comparison of bone marrow and adipose tissue mesenchymal stem cells of guinea pig. International Journal of Stem Cells. 9 (1), 115-123 (2016).
  10. Jurgens, W. J., et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell and Tissue Research. 332 (3), 415-426 (2008).
  11. Secunda, R., et al. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology. 67 (5), 793-807 (2015).
  12. Tholpady, S. S., Katz, A. J., Ogle, R. C. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology. 272 (1), 398-402 (2003).
  13. Yoshimura, K., et al. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plastic Surgery. 32 (1), 48-57 (2008).
  14. Si, Z., et al. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomedicine & Pharmacotherapy. 114, 108765 (2019).
  15. Hammoud, S. H., AlZaim, I., Al-Dhaheri, Y., Eid, A. H., El-Yazbi, A. F. Perirenal adipose tissue inflammation: Novel insights linking metabolic dysfunction to renal diseases. Frontiers in Endocrinology. 12, 707126 (2021).
  16. Liu, B. X., Sun, W., Kong, X. Q. Perirenal fat: A unique fat pad and potential target for cardiovascular disease. Angiology. 70 (7), 584-593 (2019).
  17. Lee, J., Han, D. J., Kim, S. C. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochemical and Biophysical Research Communications. 375 (4), 547-551 (2008).
  18. Chandra, V., et al. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One. 6 (6), e20615 (2011).
  19. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering. 7 (2), 211-228 (2001).
  20. Huang, S. J., Yang, W. S., Lin, Y. W., Wang, H. C., Chen, C. C. Increase of insulin sensitivity and reversal of age-dependent glucose intolerance with inhibition of ASIC3. Biochemical and Biophysical Research Communications. 371 (4), 729-734 (2008).
  21. Jang, H. J., Cho, K. S., Park, H. Y., Roh, H. J. Adipose tissue-derived stem cells for cell therapy of airway allergic diseases in mouse. Acta Histochemica. 113 (5), 501-507 (2011).
  22. Haasters, F., et al. Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy. 214 (5), 759-767 (2009).
  23. Zhang, S., et al. Identification and characterization of pig adipose-derived progenitor cells. Canadian Journal of Veterinary Research. 80 (4), 309-317 (2016).
  24. Varma, M. J., et al. Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells and Development. 16 (1), 91-104 (2007).
  25. Palumbo, P., et al. Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): An overview. International Journal of Molecular Sciences. 19 (7), 1897 (2018).
  26. Yu, B., Zhang, X., Li, X. Exosomes derived from mesenchymal stem cells. International Journal of Molecular Sciences. 15 (3), 4142-4157 (2014).
  27. Maumus, M., et al. Native human adipose stromal cells: localization, morphology, and phenotype. International Journal of Obesity. 35 (9), 1141-1153 (2011).
  28. Helmy, M. A., Mohamed, A. F., Rasheed, H. M., Fayad, A. I. A protocol for primary isolation and culture of adipose-derived stem cells and their phenotypic profile. Alexandria Journal of Medicine. 56 (1), 42-50 (2020).
  29. He, Q., Ye, Z., Zhou, Y., Tan, W. S. Comparative study of mesenchymal stem cells from rat bone marrow and adipose tissue. Turkish Journal of Biology. 42 (6), 477-489 (2018).
check_url/65172?article_type=t

Play Video

Cite This Article
Oliva Cárdenas, A., Zamora-Rodríguez, B. C., Batalla-García, K. A., Ávalos-Rodríguez, A., Contreras-Ramos, A., Ortega-Camarillo, C. Isolation and Identification of Mesenchymal Stem Cells Derived from Adipose Tissue of Sprague Dawley Rats. J. Vis. Exp. (194), e65172, doi:10.3791/65172 (2023).

View Video