-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Developmental Biology
Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tis...
Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tis...
JoVE Journal
Developmental Biology
This content is Free Access.
JoVE Journal Developmental Biology
Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

Full Text
29,725 Views
09:20 min
March 31, 2016

DOI: 10.3791/53886-v

Yu-Jen Chen1,2, Hui-Yu Liu2, Yun-Tsui Chang2, Ying-Hung Cheng2, Harry J. Mersmann2, Wen-Hung Kuo3, Shih-Torng Ding1,2

1Institute of Biotechnology,National Taiwan University, 2Department of Animal Science and Technology,National Taiwan University, 3Department of Surgery,National Taiwan University Hospital and College of Medicine

Summary

This protocol describes the isolation of pig adipose-derived stem cells (pADSC) from subcutaneous adipose tissues with examination of multipotency. The multipotent pADSC are used to delineate processes of adipocyte differentiation and study transdifferentiation into multiple cell lineages of mesodermal mesenchyme or further lineages of ectoderm and endoderm for regenerative studies.

Transcript

The overall goal of this procedure is to isolate adipose-derived stem cells from porcine subcutaneous white adipose tissues for evaluation of their ability to differentiate into mesenchymal adipocytes, osteocytes, and chondrocytes. This method can help answer the key questions of obesity research. It is a good tool to uncover the molecular mechanism involved in regulating adipose tissue development.

The main advantage of this technique is that an abundant number of stromovascular cells can be harvested allowing in depth analysis of adipocyte differentiation and biology. The implication of this technique stands toward stem cell therapy research as pig adipose-derived stem cells exhibit multipotency for transdifferentiation into multiple cell lineages. Begin by laying the piglet in the prone position on a clean surgical table.

Shave all of the hair down the midline from the neck to the tail, and scrub the dorsal skin with 7.5%Povidone iodine three times. After the third scrub, allow the iodine to sit on the surface of the skin for about 10 minutes. Then, spray the skin with 70%ethanol.

And use ethanol-soaked gauze pads to wipe the skin in one direction to remove the disinfectant until no obvious color is observed. Next, make an incision from the neck region down to the leg. Then, holding up the fat and skin with forceps, use a scalpel to separate the porcine dorsal fat layer of subcutaneous adipose tissues and the adjoining skin layer from the muscles.

Immediately immerse the skin and fat tissue in a sterilized 200-milliliter beaker, containing serum-free, 37-degrees Celsius DMEM and spray the outside of the beaker with 70%ethanol. Then, place the beaker in a laminar flow cell culture hood and place a 40 by 30-centimeter sterilized, triple-layer foil cover next to the beaker. Transfer the tissue, skin facing down, onto the foil.

And use forceps and scissors to trim the remaining muscle tissue off of the adipose tissue. Cut the fat into square 7 by 7-centimeter pieces and then transfer the fat pieces into a new sterilized 200-milliliter beaker containing serum-free, 37-degrees Celsius DMEM. Now, place a customized slice holder, equipped with a carbon-steel slicer blade onto the cover foil and place one of the fat pieces onto the slicer with the fat layer facing down.

Slice the fat into approximately 1-millimeter thick pieces as close as possible to, but without cutting the skin. Then, use scissors to mince the adipose tissue pieces as finely as possible, and add the pieces to a 250-milliliter Erlenmeyer flask containing filtered digestion medium supplemented with collagenase. Inclubate the flask with swirling for 90 minutes at 45 RPM, in an orbital shaker at 37 degrees Celsius.

When the digestion medium becomes a slurry, without significant tissue clumps, stop the digestion with an equal volume of culture medium containing DMEM F-12 with 10%FBS. To collect the pig adipose-derived stem cells, filter the digested adipose tissue suspension through a single layer of chiffon into a sterilized 250-milliliter serological bottle, using forceps to depress the middle of the chiffon, to guide and assist the passage of the digest. Drain and twist the chiffon with the forceps to complete the passage and distribute the medium into four 50-milliliter conical centrifuge tubes.

Collect the stromal-vascular cells by centrifugation. Then, decamp the supernatant without disturbing the pellets to remove most of the top fat layer containing the mature adipocytes. Next, re-suspend the pellets in 10 milliliters of DMEM with pipetting and gentle shaking.

Spin down the cells again and re-suspend the pellets in 10 milliliters of ACK lysis buffer. After seven minutes at room temperature, stop the red blood cell lyisis with the addition of 10 milliliters of DMEM to each tube, gently shaking the tubes to mix. And then, spin down the cells again.

Wash the cells two more times with 10 milliliters of DMEM and then pool the supernatants through a 100-micron strainer into a single 50-milliliter conical tube. Gently pipette the cell suspension several times to evenly distribute the cells and count the cells by Trypan Blue exclusion. Finally, seed the pig adipose-derived stem cells at a 6 times 10 to the 4th per centimeter-squared density into the appropriately-sized culture container in cell culture medium.

And incubate the cells at 37 degrees Celsius and 5%CO2, to facilitate the formation of a monolayer. The morphology of the stromal-vascular fraction-derived pig adipose-derived stem cells is similar to mouse or human adipose-derived stem cells with an expanded fiberglass-like morphology observed 24 hours after seeding. The pig adipose-derived stem cells become confluent within 72 hours, at which point they are ready for adipocyte or other mesenchymal-type differentiation.

These cells also exhibit a strong adipogenic potential after chemical induction and mature adipocytes can be observed after nine days of differentiation, with over 90%of the pig adipose-derived stem cells demonstrating adipogenic differentiation. Mesenchymal stem cells surface markers including CD 29, CD 44, CD 90, and MHC 1, are highly expressed on the pig adipose-derived stem cells, while CD 4a, CD 31, CD 45, and MHC II are barely detectable, demonstrating that these pig adipose-derived stem cells exhibit mesenchymal-type characteristics without significant endothelial or hematopoietic stem cell contamination. Further, the differentiated pig adipose-derived stem cells can be identified as adipocytes, osteocytes, or chondrocytes, through the use of specific tissue-staining dyes, demonstrating that these stromal-vascular fraction-derived cells retain a multipotency typical of mesenchymal-type progenitors.

While performing this procedure, it is important to remember to have a good aseptic technique for cell culture and to perform all the steps as quickly as possible. To maximize the viability of the cells. Once mastered, the cells can be harvested from two to three pigs in six hours, if the technique is performed properly.

This standard technique paved the way for obesity researchers in the field of diabetes to explore the molecular switches, such as transcription factors that control adipocyte differentiation. After watching this video, you should have a good understanding of how to isolate pig adipose-derived stem cells and to evaluate the multi-ability of these cells to differentiate into adipocytes, osteocytes, and chondrocytes.

Explore More Videos

Adipose-derived Stem CellsMesenchymal AdipocytesOsteocytesChondrocytesObesity ResearchAdipocyte DifferentiationStem Cell TherapyMultipotencyTransdifferentiation

Related Videos

Isolating Adipose-Derived Stem Cells from Murine Periaortic Adipose Tissue

03:52

Isolating Adipose-Derived Stem Cells from Murine Periaortic Adipose Tissue

Related Videos

403 Views

Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates

07:23

Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates

Related Videos

42.1K Views

Isolation of Adipogenic and Fibro-Inflammatory Stromal Cell Subpopulations from Murine Intra-Abdominal Adipose Depots

06:50

Isolation of Adipogenic and Fibro-Inflammatory Stromal Cell Subpopulations from Murine Intra-Abdominal Adipose Depots

Related Videos

2.9K Views

Preparation of Adipose Progenitor Cells from Mouse Epididymal Adipose Tissues

06:17

Preparation of Adipose Progenitor Cells from Mouse Epididymal Adipose Tissues

Related Videos

6K Views

Isolation, Proliferation and Differentiation of Rhesus Macaque Adipose-Derived Stem Cells

07:33

Isolation, Proliferation and Differentiation of Rhesus Macaque Adipose-Derived Stem Cells

Related Videos

2.3K Views

Technique for Obtaining Mesenchymal Stem Cell from Adipose Tissue and Stromal Vascular Fraction Characterization in Long-Term Cryopreservation

05:57

Technique for Obtaining Mesenchymal Stem Cell from Adipose Tissue and Stromal Vascular Fraction Characterization in Long-Term Cryopreservation

Related Videos

3.6K Views

Injection of Porcine Adipose Tissue-Derived Stroma Cells via Waterjet Technology

07:05

Injection of Porcine Adipose Tissue-Derived Stroma Cells via Waterjet Technology

Related Videos

2K Views

Isolation of Rat Adipose Tissue Mesenchymal Stem Cells for Differentiation into Insulin-producing Cells

08:09

Isolation of Rat Adipose Tissue Mesenchymal Stem Cells for Differentiation into Insulin-producing Cells

Related Videos

8K Views

Isolation and Identification of Mesenchymal Stem Cells Derived from Adipose Tissue of Sprague Dawley Rats

10:50

Isolation and Identification of Mesenchymal Stem Cells Derived from Adipose Tissue of Sprague Dawley Rats

Related Videos

3.8K Views

Semi-Automated Isolation of the Stromal Vascular Fraction from Murine White Adipose Tissue Using a Tissue Dissociator

06:08

Semi-Automated Isolation of the Stromal Vascular Fraction from Murine White Adipose Tissue Using a Tissue Dissociator

Related Videos

2.6K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code