GFPをレトロウイルスベクターを用いた誘導多能性幹細胞(性IPSC)にヒト体細胞を再プログラミングする

Biology

Your institution must subscribe to JoVE's Biology section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Summary

OCT4、SOX2、KLF4とMYCのレトロウイルス媒介性異所性発現を介してヒトの人工多能性幹細胞(性IPSC)を生成する方法が記載されている。 GFP発現に基づいて人間のIPSCコロニーを識別するための実用的な方法についても説明されています。

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Kim, K. Y., Hysolli, E., Park, I. H. Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral Vector with GFP. J. Vis. Exp. (62), e3804, doi:10.3791/3804 (2012).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

ヒト胚性幹細胞(ヒトES細胞) のin vitro疾患モデルと再生医療1 ための多能性と非常に貴重な細胞の源である。それは以前にヒト体細胞は、4つの転写因子の異所性発現(Oct4の、レトロウイルスベクター、KLF4及び Myc)によって多能性を再プログラムすることができることを示して誘導多能性幹細胞(性IPSC)2-4になっています。ヒトES細胞と同様に、人間性IPSCは、多能性と自己細胞の潜在的な源である。ここでは、GFPを含有するレトロウイルスバックボーン4にクローン化された4初期化因子によるヒト線維芽細胞を再プログラムするためのプロトコルについて説明します。以下のプロトコルを使用して、我々は、ヒトESCを培養条件下で3〜4週間で人間性IPSCを生成します。人間のIPSCのコロニーが密接に形態の似ているヒトES細胞とレトロウイルスのジーンサイレンシングの結果、GFP蛍光の損失を表示します。蛍光microscoの下に機械的に隔離されたIPSCのコロニーPEは、ヒトES細胞と同様の方法で動作します。これらの細胞では、我々は、複数の多能性遺伝子と表面マーカーの発現を検出することができます。

Protocol

1。初期化因子を発現するレトロウイルスによるプログラミング

  1. ヒト線維芽細胞は線維芽細胞の培地(10%ペン/連鎖球菌を含むDMEM中でFBS)で培養されています。
  2. 6ウェルプレートの1ウェルに感染する前に、一日は、プレート1×10 5、ヒト線維芽細胞。
  3. 死んだ細胞を除去し、新鮮な線維芽細胞の培地2mlを追加するには、培地を吸引除去する。 5μg/ mlの最終濃度で硫酸プロタミンを追加します。
  4. 慎重に感染多重度(MOI)5に対応する各GFP発現ウイルスの適切な量を追加します。
  5. 感染後一日、ウイルス上清を除去し、2 mlの線維芽細胞の培地を追加し、2 mlのPBSで3回洗浄する。
  6. 感染3日後、GFPの蛍光を確認し、2 mlの線維芽細胞培地でウェルを補充する。
  7. 四日間の上に線維芽細胞培地中で照射したマウス胚性線維芽細胞(MEF)フィーダー細胞の感染は、プレート1×10 4 / cm 2とした後0.1%ゼラチンでコーティングされた10cmのペトリ皿。 37℃で一晩インキュベートします。
  8. 五日、感染後、1ミリリットル0.05パーセントtypsin / EDTA、5分間37℃、および200 gで5分間遠心分離に感染したヒト線維芽細胞を切り離します。培地を吸引除去し、線維芽細胞の培地10mlので細胞を再懸濁します。プレコート10cmのプレートに細胞を移す。
  9. 24時間後、hESCの培地(20%ノックアウト血清代替物、DMEM/F12、0.1ミリリットル非必須アミノ酸、4 ng / mlのbFGFを、ペン/球菌/グルタミン酸、β-merceptoethanol)で培地を交換してください。毎日の培地を変更します。 ESCのようなコロニーは感染後20から27日で表示を開始します。

2。 iPSCsの分離と拡張

  1. 蛍光顕微鏡下で、ヒトES細胞に似た形態を示しています。植民地におけるGFP蛍光の有無を確認してください。
  2. 10μlのピペットを用いて、個々のIPSCのコロニーをピックアップし、ゼラチンおよびMEF-CoAの1つのウェルに配置しますテッド12ウェルプレートとhESCの培地を添加した。毎日の培地を変更します。
  3. 継代については、DMEM/F12 1mlでプレートを洗浄し、コラゲナーゼの0.5ミリリットルを追加し、37℃で10分間インキュベート℃、
  4. DMEM/F12で細胞を2回洗浄します。
  5. 新鮮なhESCの培地2mlを追加します。セルリフターを使用して、小さな部分にコロニーを破壊し、プレートから残りの細胞を切り離します。
  6. ゼラチンとMEF-コーティングされた6ウェルプレートの1ウェルにコロニーの再懸濁の部分を転送します。

3。多能性マーカーの免疫蛍光分析

  1. PBSで細胞を3回洗浄し、室温で20分間、4%パラホルムアルデヒドで固定します。
  2. 静かにPBSで細胞を3回洗浄し、30分間PBSでトリトンX-100 0.2%透過性。
  3. 2時間のPBSで3%BSAで細胞をインキュベートすることにより、非特異的結合をブロックします。
  4. 4℃で一晩一次抗体で細胞をインキュベートします。
  5. <LI> PBSで細胞を3回洗浄し、光から遮蔽し、室温で1時間の特定の二次抗体で細胞をインキュベートします。
  6. 室温で5分間インキュベートし、続いて最後の洗浄時にPBSおよびアドオンDAPIで細胞を3回洗浄します。
  7. 蛍光顕微鏡による染色を検出します。

4。多能性マーカーの定量的リアルタイムPCRアッセイ

  1. キアゲン社のRNeasyキットを用いて、ヒト線維芽細胞由来のヒト性IPSCからトータルRNAを分離します。
  2. Superscript II逆転写酵素を用いた第一鎖cDNAを合成する。
  3. 以前に報告されたプライマーを用いて、多能性の遺伝子を検出するために定量PCRを実行します。6

5。代表的な結果

  1. プログラミング時の形態変化
    我々は、OCT4、SOX2、KLF4およびMYCを運ぶレトロウイルスのカクテルで、ヒト線維芽細胞BJ1とデトロイト551感染と( 図1)プログラミング時の形態学的変化を検出することができました。二十一日、感染後、我々は彼らのhESCのような形態で小さなIPSCコロニーを認識しています。さらに、我々はGFPの蛍光により性IPSCを認識しています。そのようなESCと性IPSCとして多能性幹細胞、プロウイルス遺伝子発現7-9を抑制する分子機構を表現しています。当社独自のレトロウイルスベクターは、レトロウイルスLTRで遺伝子を再プログラミングと一緒にGFPを表現しています。したがって、継続的にGFPを発現する細胞は、プロウイルス遺伝子サイレンシングすることなく導入遺伝子を発現するように考えられている。多能性分子ネットワークを取得忠実に再プログラムIPSCコロニーはGFP発現( 2)10の不在を示しています。
  2. 人間のiPSCsの多能性のキャラクタリゼーション
    我々は、TRA-1-81、TRA-1-60、SSEA-4、SSEA-3、OCT4とNANOG抗体を用いた免疫組織化学を経由してデトロイト-551線維芽細胞由来コロニーを分析した( 図3A)のすべてを表現しています。また、定量的RT-PCR分析を介して遺伝子発現を解析した。我々は、OCT4、SOX2、KLF4、MYCとNANOGの発現が有意に親の線維芽細胞と比較しますが、H9ヒトES細胞( 図3B)のそれに見合った増加したことを観察した。

図1
図1。レトロウイルスに感染したヒト線維芽細胞の形態変化(AD)初期化因子に感染したデトロイト-551線維芽細胞からのコロニーでプログレッシブ形態変化。 5日目()、10日目(B)、14日目(C)、21日(D)。細胞は21日後hESCのような形態を示しています。

図2
図2。リプログラミングを受けている細胞の代表的GFP蛍光発現。 4を発現するレトロウイルスに感染し、4週間hESCの培地中でインキュベートした。 BJ繊維芽細胞(A、B)とデトロイト551(C、D)は、形態学的類似の表示されます。 21日から、GFP陰性のコロニーは10善意性IPSCを表現する、形成するために開始します。 (E、F)適切なリプログラミングを受けていないデトロイト551細胞の形質転換を示しています。位相コントラストビューの下に(A、C、E)のコロニー。 (B、D)が正しくGFPサイレンシングを示す細胞を再プログラム。形質転換コロニーから(F)明るいGFP発現。

図3
図3。人間の人工多能性幹細胞のキャラクタリゼーション。(a)ヒト551-IPS-K1細胞のコロニーは、多能性細胞に共通のマーカーを発現する。 DAPI染色は、フィールドごとの合計のセルの内容を示しています。 OCT4、SOX2の発現のために(B)定量リアルタイムPCR(RT-QPCR)、KLF4、MYC親のfのibroblast、551-IPS-K1の性IPSC、およびH9ヒト胚性幹細胞(ヒトES細胞)。データは、β-アクチンのハウスキーピング遺伝子に対して正規化し、4親の線維芽細胞での発現レベルを基準にプロットした。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

性IPSCの4つの転写因子の発現は、ヒト線維芽細胞を再プログラムします。多くの試みが臨床的に安全性IPSCを生成するために、非積分または非遺伝的アプローチを用いてヒトの性IPSCを生成するために行われました。これまでのところ、これらのメソッドは非常に低い効率を示し、再現性11月14日を向上させるためにさらに最適化する必要があります。レトロまたはレンチウイルスの方法は容易に導出し、ウイルスの統合に起因する安全性の問題にあまり依存しているin vitroでの疾患モデル人間のための性IPSCを適用するために使用されます。ここで説明する方法を再プログラミングすることは、ヒトのiPSCsの効率的な導出のために利用可能です。人間のiPSCsの選択は、主にヒトESCに似ているコロニー形態に基づいています。もっと重要なのは、私たちの方法は、多能性幹細胞7,15でレト ​​ロウイルスの長い末端反復配列(LTR)のサイレンシングの機能を利用しています。このプロトコルで使用されているレトロウイルスベクターは、リプログラミングにリンクされているGFP遺伝子を含む内部リボソーム侵入配列(IRES)と5を介しての要因。 GFPの発現はプロウイルスLTRにより駆動される。これらのウイルスに感染した線維芽細胞は最初に明るいGFP発現を示しています。一度完全に再プログラム、性IPSCは、蛍光顕微鏡下で容易に可視化されるGFPの発現を、失うことになります。このプロトコルでは、我々は、胎児や新生児線維芽細胞(デトロイト551とBJ1)からiPSCsの生成を説明します。しかし、このレトロウイルスベクターは、通常成人線維芽細胞からの性IPSCと同様にメンデルや複雑な疾患4,16,17患者のさまざまなを生成するために使用されています。

以前に我々は10を再プログラムする人間の体細胞中に細胞表面マーカーの変化を分析した。細胞表面マーカーの漸進的変化があります。線維芽細胞は、プログラミングの発現によって抑制されるCD13を発現する。細胞は、GFPとSSEA4を一緒に表現するためにプログラミングの開始を受けている。そして、彼らはexpressiを失うプロウイルスsilecingと急行の追加多能メーカーTRA1-60 10を介してGFPの上に。 TRA1-60の発現がよくTRA1-60を忠実に再プログラム性IPSCのマーカーであることを示唆し、GFPのサイレンシングとよく発達した奇形腫の形成と相関している。 GFPサイレンシングは、TRA1-60の発現のための代替マーカーであり、骨の折れる生細胞染色せずにIPSCコロニーの同定を可能にする。性IPSCのためのマーカーとしてGFP発現の損失を使用して、容易に、一貫性IPSCを分離します。プログラミングには経験を持たない細胞の科学者を食い止める。

Subscription Required. Please recommend JoVE to your librarian.

Acknowledgments

この作品は、チャールズ·フッド財団からの医学、母子保健研究賞のイェール大学によって資金を供給された。

Materials

Name Company Catalog Number Comments
DMEM/F12 Invitrogen 11330057 80%
Knockout Serum Replacer Invitrogen 10828-028 20%
L-Glutamine (200 mM) Invitrogen 25030081 2 mM
Nonessential Amino Acids (10 mM) Invitrogen 11140050 0.1 mM
β-Mercapt–thanol (14.3 M) or MTG Invitrogen M-6250 0.1 mM
bFGF-2 10 μg/ml GIBCO, by Life Technologies GF003AF 4 ng/ml
Penicillin/Streptomycin EMD Millipore 15140-122 1%
DMEM Invitrogen 11965118 90%
FBS Invitrogen 10407028 10%
Penicillin/Streptomycin EMD Millipore 15140-122 1%
Table 1. Culture Medium
OCT4 Abcam Ab19857 1:500
SSEA3 EMD Millipore MAB4303 1:100
SSEA4 BD Biosciences BD560218 1:100
Tra-1-81 BD Biosciences BD560173 1:100
Tra-1-60 BD Biosciences BD560174 1:100
NANOG Abcam Ab21624 1:500
Alexa-Flur 488 Invitrogen A11008 1:1000
Alexa-Flur 555 Invitrogen A21422 1:1000
DAPI Invitrogen D1306 1:5000
pMIG-OCT4 Addgene 17225
pMIG-SOX2 Addgene 17226
pMIG-KLF4 Addgene 17227
pMIG-MYC Addgene 18119
Collagenase type IV Invitrogen 17104019 1mg/ml
Gelatin, Porcine Sigma-Aldrich G 1890 0.1%
Triton Sigma-Aldrich X100-500ML 0.2%
Paraformaldehyde Sigma-Aldrich 47608 4%
BSA American Bioanalytical AB01800 3%
MEF feeder cells EMD Millipore PMEF-N
Cell Lifter Corning 3008
Fluorescent microscopy: inverted microscope with GFP filter
Table 2. Reagents and equipment

DOWNLOAD MATERIALS LIST

References

  1. Murry, C. E., Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 132, 661-680 (2008).
  2. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  4. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., Daley, G. Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, 141-146 (2008).
  5. Park, I. H., Lerou, P. H., Zhao, R., Huo, H., Daley, G. Q. Generation of human-induced pluripotent stem cells. Nature Protocols. 3, 1180-1186 (2008).
  6. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., Daley, G. Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, 141-146 (2008).
  7. Hotta, A., Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry. 105, 940-948 (2008).
  8. Matsui, T., Leung, D., Miyashita, H., Maksakova, I. A., Miyachi, H., Kimura, H., Tachibana, M., Lorincz, M. C., Shinkai, Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 464, 927-931 (2010).
  9. Wolf, D., Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 458, 1201-1204 (2009).
  10. Chan, E. M., Ratanasirintrawoot, S., Park, I. H., Manos, P. D., Loh, Y. H., Huo, H., Miller, J. D., Hartung, O., Rho, J., Ince, T. A. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 27, 1033-1037 (2009).
  11. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin,, Thomson, J. A. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 324, 797-801 (2009).
  12. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 4, 472-476 (2009).
  13. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7, 618-630 (2010).
  14. Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., Takada, N., Inoue, M., Hasegawa, M., Kawamata, S. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences of the United States of America. 108, 14234-14239 (2011).
  15. Wolf, D., Goff, S. P. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 131, 46-57 (2007).
  16. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., Daley, G. Q. Disease-specific induced pluripotent stem cells. Cell. 134, 877-886 (2008).
  17. Kim, K. Y., Hysolli, E., Park, I. H. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America. 108, 14169-14174 (2011).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics