Summary

Omprogrammering Mänskliga somatiska celler in i inducerade pluripotenta stamceller (iPSCs) Använda retroviral vektor med GFP

Published: April 03, 2012
doi:

Summary

En metod för att generera humana inducerade pluripotenta stamceller (iPSCs) via retrovirus-medierad ektopiskt uttryck av Oct4 är SOX2, KLF4 och MYC beskrivits. Ett praktiskt sätt att identifiera de mänskliga IPSC kolonier som bygger på GFP-uttryck diskuteras också.

Abstract

Mänskliga embryonala stamceller (hESCs) är pluripotenta och en ovärderlig cellulära källorna för in vitro sjukdomar modellering och regenerativ medicin 1. Det har tidigare visat att humana somatiska celler kan omprogrammeras för att pluripotens med ektopisk uttryck av fyra transkriptionsfaktorer (Oct4, Sox2, Klf4 och Myc) och bli inducerade pluripotenta stamceller (iPSCs) 2-4. Liksom hESCs, humana iPSCs är pluripotenta och en potentiell källa för autologa celler. Här beskriver vi protokollet att programmera humana fibroblastceller med de fyra omprogrammeringar faktorer klonade in i GFP som innehåller retrovirala ryggraden 4. Med hjälp av följande protokoll, genererar vi människor iPSCs i 3-4 veckor under mänsklig ESC kulturen villkor. Humana IPSC kolonier liknar nära hESCs i morfologi och visa en förlust av GFP-fluorescens som ett resultat av retroviralt transgen tystande. IPSC kolonier isolerades mekaniskt under en fluorescens microscope uppträda på ett liknande sätt som hESCs. I dessa celler detektera vi uttrycket av multipla pluripotensbestämmande gener och markörer på ytan.

Protocol

1. Omprogrammering av retrovirus som uttrycker omprogrammeringar Faktorer Humana fibroblaster odlas i fibroblast-medium (10% FBS i DMEM med Pen / Strep). En dag före infektion, plattor 1×10 '5 humana fibroblaster i en brunn av en 6-brunnsplatta. Aspirera medium för att avlägsna döda celler och tillsätt 2 ml av färskt fibroblast medium. Tillsätt protaminsulfat vid en slutlig koncentration av 5 pg / ml. Tillsätt försiktigt den lämpliga mängden av varje GFP…

Discussion

Expression av fyra transkriptionsfaktorer omprogrammerar humana fibroblaster till iPSCs. Många försök gjordes för att generera humana iPSCs med användning av icke-integrerande eller icke-genetiska metoder för att generera kliniskt säkert iPSCs. Hittills har dessa metoder uppvisar extremt låg verkningsgrad och kräver ytterligare optimeras för att förbättra reproducerbarheten 11-14. Retro-eller lentiviral metoder lätt används för att härleda och tillämpa iPSCs för in vitro på männis…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Detta arbete har finansierats av Yale School of Medicine and Child Health Research Award från Charles Hood Foundation.

Materials

Name Concentration Company Catalogue Number
hESC medium
DMEM/F12 80% Invitrogen 11330057
Knockout Serum Replacer 20% Invitrogen 10828-028
L-Glutamine (200 mM) 2 mM Invitrogen 25030081
Nonessential Amino Acids (10 mM) 0.1 mM Invitrogen 11140050
β-Mercaptoethanol (14.3 M) or MTG 0.1 mM Invitrogen M-6250
bFGF-2 10 μg/ml 4 ng/ml GIBCO/BRL GF003AF
Penicillin/Streptomycin 1% Millipore 15140-122
Fiboblasts Medium
DMEM 90% Invitrogen 11965118
FBS 10% Invitrogen 10407028
Penicillin/Streptomycin 1% Millipore 15140-122

Table 1. Culture Medium

Name Concentration Company Catalogue Number
Antibodies
OCT4 1:500 Abcam Ab19857
SSEA3 1:100 Milipore MAB4303
SSEA4 1:100 BD Biosciences BD560218
Tra-1-81 1:100 BD Biosciences BD560173
Tra-1-60 1:100 BD Biosciences BD560174
NANOG 1:500 Abcam Ab21624
Alexa-Flur 488 1:1000 Invitrogen A11008
Alexa-Flur 555 1:1000 Invitrogen A21422
DAPI 1:5000 Invitrogen D1306
Plasmids
pMIG-OCT4   Addgene 17225
pMIG-SOX2   Addgene 17226
pMIG-KLF4   Addgene 17227
pMIG-MYC   Addgene 18119
Other Materials
Collagenase type IV 1mg/ml Invitrogen 17104019
Gelatin, Porcine 0.1% Sigma G 1890
Triton 0.2% Sigma X100-500ML
Paraformaldehyde 4% Sigma 47608
BSA 3% American Bioanalytical AB01800
MEF feeder cells   Millipore PMEF-N
Cell Lifter   Corning 3008
Equipment
Fluorescent microscopy: inverted microscope with GFP filter

Table 2. Reagents and equipment.

References

  1. Murry, C. E., Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 132, 661-680 (2008).
  2. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861-872 (2007).
  3. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  4. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., Daley, G. Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, 141-146 (2008).
  5. Park, I. H., Lerou, P. H., Zhao, R., Huo, H., Daley, G. Q. Generation of human-induced pluripotent stem cells. Nature Protocols. 3, 1180-1186 (2008).
  6. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., Daley, G. Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451, 141-146 (2008).
  7. Hotta, A., Ellis, J. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry. 105, 940-948 (2008).
  8. Matsui, T., Leung, D., Miyashita, H., Maksakova, I. A., Miyachi, H., Kimura, H., Tachibana, M., Lorincz, M. C., Shinkai, Y. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 464, 927-931 (2010).
  9. Wolf, D., Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature. 458, 1201-1204 (2009).
  10. Chan, E. M., Ratanasirintrawoot, S., Park, I. H., Manos, P. D., Loh, Y. H., Huo, H., Miller, J. D., Hartung, O., Rho, J., Ince, T. A. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol. 27, 1033-1037 (2009).
  11. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, ., Thomson, J. A. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 324, 797-801 (2009).
  12. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 4, 472-476 (2009).
  13. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., Ebina, W., Mandal, P. K., Smith, Z. D., Meissner, A. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7, 618-630 (2010).
  14. Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura, M., Takada, N., Inoue, M., Hasegawa, M., Kawamata, S. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences of the United States of America. 108, 14234-14239 (2011).
  15. Wolf, D., Goff, S. P. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 131, 46-57 (2007).
  16. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., Daley, G. Q. Disease-specific induced pluripotent stem cells. Cell. 134, 877-886 (2008).
  17. Kim, K. Y., Hysolli, E., Park, I. H. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America. 108, 14169-14174 (2011).

Play Video

Cite This Article
Kim, K., Hysolli, E., Park, I. Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral Vector with GFP. J. Vis. Exp. (62), e3804, doi:10.3791/3804 (2012).

View Video