Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

アルギン酸塩産生に関連する新規遺伝子の同定 Published: March 10, 2014 doi: 10.3791/51346

Summary

ここでは、画面に高密度の挿入変異体ライブラリーを生成するためのミニhimar1マリナートランスポゾンによる突然変異誘発を使用して、プロトコルを記述し隔離し、原型緑膿菌 PAO1株における新規アルギン酸レギュレータを識別します。

Abstract

緑膿菌は、汎用性の高い代謝機能を持つグラム陰性、環境細菌である。P.緑膿菌は、嚢胞性線維症(CF)患者における慢性肺感染症を確立日和見病原菌である。またmucoidyとして知られているアルギン酸と呼ばれる莢膜多糖の過剰産生は、抗生物質、化学療法および宿主防御に浮遊細胞よりも抵抗性がある粘液状のバイオフィルムの形成を促進する。また、粘液性の表現型への非ムコイドからの変換は、CFにおける慢性感染の発症のための臨床マーカーである。 P.によるアルギン酸塩過剰生産緑膿菌は重く細胞エネルギーを課税吸エルゴン過程である。したがって、アルギン酸塩生産はPに高度に規制されている緑膿菌 。より良いアルギン酸調節を理解するために、我々は、新規なアルギン酸塩レギュレータの同定のためのミニhimar1トランスポゾン突然変異誘発を使用して、プロトコルを記述原型PAO1株におけるS。手順は、2つの基本ステップで構成されています。まず、ホストEからミニhimar1トランスポゾン(PFAC)に転送受信者P.大腸菌 SM10/λpirゲンタマイシンを補充したシュードモナス分離寒天プレート上で選択した高密度の挿入変異体ライブラリーを作成するための共役二親を介して緑膿菌 PAO1。第二に、我々は、スクリーニングおよびゲンタマイシンカセットおよびDNA配列決定から外向きDNAプライマーを用いた逆PCRを介して挿入部位をマッピングするムコイドのコロニーを単離した。 (AlgTは、22を σ)は、野生型ムカマスターアルギン酸レギュレータAlgU抗シグマ因子ムカをコードするPAO1株で、このプロトコルを使用して、我々は2つの新規アルギン酸レギュレータを特定し、mucE(PA4033)kinB(PA5484) 。このハイスループット突然変異誘発プロトコルは、結腸の変化を引き起こす他の病原性関連遺伝子の同定のために修飾することができるNY形態。

Introduction

アルギン酸塩を過剰にする日和見、グラム陰性病原体緑膿菌の能力は、バイオフィルムを確立する能力において主要な因子である。アルギン酸塩の過剰産生は、多くの場合、mucoidyと呼ばれる表現型である。嚢胞性線維症(CF)に罹患した個体の痰からムコイドのコロニーの単離は、慢性感染の指標であり、直接的に患者の健康1における全体的な減少と関連している。現在、それは理解されるP.におけるアルギン酸塩の調節および生産緑膿菌は、主に2つのオペロンで行われます。全体のアルギン酸塩ポリマーの合成と輸出を担当している( 藻類 - ALG8 - alg44 - algK - 代数 - algG - algX - algL - algI - algJ - - algF algD)最初は、12の遺伝子が含まれているアルギン酸生合成オペロン、である外environmeにペリプラズムNT 2-5。二オペロンは遺伝子のクラスター代替シグマ因子algU / Tで始まり、 ムカ、mucB、およびMUCDと続いている。 mucAB-Dはアルギン酸塩の生産6-8の負の調節因子として分類されている間AlgU / Tは、正の調節因子である。さらに、異化代謝産物抑制制御、キナーゼ活性(KinB)と内タンパク質分解によってそのようなAlgB、AlgQ、AlgR、およびRpoNだけでなく、転写後および翻訳後修飾のような転写調節因子も、アルギン酸塩に関与することが示されているレギュレーション9月14日

PFACとして知られているミニhimar1トランスポゾンベクターは、もともとハーバード大学医学部15博士Mekalanos '研究室で作成されました。 PFACプラスミドは2 27 BPSの逆方向反復と中央のゲンタマイシン耐性カセット(aacC1:534 BP)に挟まれた転移因子で構成され、hyperactをコードする遺伝子IVEはマリナートランスポザーゼ 16、および遺伝子をコードするβ-ラクタマーゼ(BLA)( 図1)。 DQ366300 13:PFACの転移因子についての配列情報は、GenBankアクセッション番号で入手できます。 PFACにおいて、インバースPCRを用いて染色体挿入部位の同定のために使用されるaacC1遺伝子の背後にある複数のクローニング部位(MCS)が存在する。ミニhimar1トランスポゾンを使用する場合の1つの主要な利点は、特定の宿主因子を移調(誘発)のために必要ありませんです。また、Pのゲノムで発見TAジヌクレオチド挿入部位の高い存在があります緑膿菌 。それぞれのゲノムを、例えば、TAジヌクレオチド挿入部位はPAO1に94404と100229回発生(6264404 BPS、GenBankアクセッション番号NC_002516.2)とPA14(ジェンバンクアクセス番号NC_008463 6537648 BPS)。なぜなら、ゲノム中のTAジヌクレオチドの豊富さ、ミニhimar1 himar1トランスポゾンは、Pのゲノム内の任意の非必須遺伝子に挿入することができます緑膿菌 。これはPAO1ゲノムにおけるオープンリーディングフレームあたり約18のTA挿入部位を提供しています。

ここでは、P.中mucoidyの新規制御因子を特定するために、ミニhimar1トランスポゾンによる突然変異誘発を使用して、プロトコルを記述緑膿菌 。具体的には、我々はbiparentally Eからミニhimar1トランスポゾンを含むPFACベクトル共役非ムコイド栄養PAO1株に大腸菌 SM10/λpir。トランスポゾンは、ゲノムに組み込まれた後、レシピエント株は、 大腸菌の増殖を阻害するトリクロサンを含有する、シュードモナス分離寒天(PIA)上で培養する大腸菌 。このように、の変異体のライブラリー対ゲンタマイシン耐性およびカルベニシリン感受性表現型を持つことになります、注意してください。本研究では、PAO1の約8万挿入変異体は、4つの別々の動詞によって単離した。次に、ムコイド分離株についてスクリーニングし、制限酵素消化、ライゲーション、逆PCRにより挿入部位を決定した。私たちは、ゲノム当たりの挿入の数を確認するためのプローブとしてゲンタマイシン耐性カセットを用いてサザンブロット解析を行った。我々は、このプロトコルを使用してコンジュゲート当たりの得た変異体の90%以上がゲノム中にhimar1の単一コピーを持っていたし、ゲンタマイシン耐性およびカルベニシリンに敏感な表現型を示していると判断。 32粘液性分離株の合計が同定された、そのうちの22は、Pの異なる遺伝子座にマップされた緑膿菌 PAO1染色体。挿入このレートは、アルギン酸塩過剰生産のいくつかの新規制御因子を特定するために十分なカバレッジを提供します。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1。細菌株の準備と二親共役

  1. E.接種 37℃で一晩振盪インキュベーター中ゲンタマイシンと場所の15μg/ mlのを補ったルリアブロス(LB)5ml中大腸菌 SM10/λpir/pFAC
  2. Pを接種緑膿菌の菌株のLB 5ml中PAO1、そして42℃で一晩振とう培養器内の場所
  3. OD一晩培養の600を測定し、PAO1とEの等量を混ぜる最終容量は1〜1.4ミリリットルの間であることを大腸菌 PFACは、。
  4. 5分間6000×gで遠心分離混合物。
  5. 一方、結合のためにLBプレートを乾燥さ:10〜15分間、37℃のインキュベーター内で開いたプレートを残す。
  6. 細胞混合物からの上清50μlが、すべてを削除します。
  7. 1コンパクト滴の乾燥をLBプレートに上清とピペットの残り50μlの細胞ペレットを再懸濁します。
  8. 慎重に(IMPOを乾燥させるためにドラフト内でプレートを置きRTANT注:プレート上に広げ、細胞が、これは大幅に)結合の効率が低下しないようにしてください。
  9. 液滴が乾燥した後、LBプレートを反転し、4〜6時間37℃でインキュベートする。
  10. 細胞混合物をインキュベートしている間、ゲンタマイシン300μgの/ mlの大(150外径×15ミリメートル)PIAプレートを準備します。使用前に、15〜20分間、37℃のインキュベーター内に置くことにより、任意の残留水分を除去。
  11. 細胞混合物のインキュベーションが完了した後、無菌の接種ループを用いて細胞を採取し、1mlのLB、ボルテックス、又はピペットを含有する微小遠心管中で、十分に混合する。
  12. 300μg/ mlのゲンタマイシンを含む大きなPIAプレートに細胞を均一に広げる。 (重要:この手順では、それは別々のプレートに細胞混合物の増加ボリュームを追加することをお勧めし( 例えばプレート1:10μL、プレート2:50μL、プレート3:100μL、プレート4:500μL、 など ) 。
  13. 37℃で一晩インキュベートする。℃、

2。ムコイドコロニーの検出と分離

  1. インキュベーターからプレートを取り外し、粘液状のコロニーについて検討する。
  2. 小皿PIAとゲンタマイシン300μgの/ mlの(100外径×10ミリメートル)での分離のために、単一の粘液状コロニーと連勝を隔離する。
  3. 37℃で一晩インキュベートする。
  4. 前の晩培養物にステップ2.2を繰り返します。
  5. 繰り返します粘液性分離株の安定性を決定するために、2.2から2.4までさらに2回繰り返します。
  6. 最終的な分離株の工程の後に、単一の粘液状コロニーをLBの4.5ミリリットルを接種し、37℃で一晩シェーカーでインキュベート
  7. 次の日、それぞれの粘液性変異体のラベル3マイクロチューブ。
  8. ゲノムDNA抽出およびトランスポゾン挿入部位を同定するための2管(プロトコル3を参照)に一晩培養の2 1.25ミリリットルずつを準備します。
  9. さらに、appropriatに1ミリリットル一晩培養をピペッティングすることにより、各粘液性変異体をアーカイブ10パーセントスキムミルクを等量含むイーリーで標識されたクライオバイアル。 -86℃での​​ストア

3。 gDNAを制限消化および連結

  1. 任意の好適な方法( 例えば 、フェノール-クロロホルム、スピンカラムなど使用して、粘液性変異株からのgDNAを抽出します。
  2. gDNAの濃度を決定するため、制限エンドヌクレアーゼSalIで2μgの1μlの総ダイジェスト、ウシ血清アルブミンをSalI酵素緩衝液(100mMのNaCl、50mMのトリス-HCl、10mMのMgCl 25μlの0.5μlの、1mMのジチオスレイトール(DTT)、室温でのpH 7.9)および50μlの全容量を達成するためのdH 2 Oの適切な体積。
  3. 37℃で一晩DNAを消化(重要:制限酵素の効率に応じて、一晩ダイジェストに追加1μLを加え、1〜2時間、37℃でインキュベートする必要があるかもしれないこれは一晩消化するために追加されます。)
  4. DIGEを浄化任意の好適な方法( 例えば 、アガロースゲル精製、スピンカラム)とバッファの25μlの溶出を使用してSTEDのDNA。
  5. 、〜10月20日NG /μLの好ましい濃度で精製したDNAの11μLを混合して消化されたDNAを連結ライゲーションバッファー(330 mMトリス - 酢酸pH7.5の、660 mMの酢酸カリウム、100 mM酢酸マグネシウム、5 mMと1.5μL DTT)、100 mMのATPと1μlのDNAリガーゼ1.5μL。
  6. 室温で15分間混合物をインキュベートし、次いで70℃で15分間インキュベートすることによって酵素を不活性化(注:長いを室温で混合物をインキュベートすると、ライゲーションの成功を増加させることができる)。

4。逆PCR(のiPCR)と配列解析

  1. 以下のフォワードおよびリバースプライマーおよび熱サイクル条件を使用してライゲーション産物でのiPCRを実行します。
    フォワードプライマー(Gm3OUT):GGGCATACGGGAAGAAGTGA
    - リバースプライマー(Gm5OUT):GACTGCCCTGCTGCGTAACA
    サーモサイコンディtions:
    1。 1分間94℃に。
    2。 1分間94℃に。
    3。 2分間58℃に。
    4。 2分間72℃に。
    5。 8分間72℃に。
    6。 10℃のホールド。
    繰り返します34サイクルの2-4を繰り返します。
    (注:増幅iPCRの製品は4℃で保存することができます)
  2. 成功のiPCR増幅を確認するために、アガロースゲル電気泳動を行う。
  3. Gm3OUTとGm5OUTプライマーを用いてのiPCR製品にシーケンシングを実行します。挿入部位とhimar1の向きが外にマッピングされます。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

図1に示すように、ミニhimar1マリナートランスポゾンベクターは、PFACは、TAの挿入部位は、そのσ70依存性プロモーターとマルチクローニングサイト(MCS)と、aacC1ゲンタマイシン耐性カセットに隣接した2 27 bpの逆方向反復が含まれています。さらに、PFACベクトルは、高活性himar1トランスポザーゼ 、β-ラクタマーゼ(BLA)、およびTRA転送オペロンをコードする遺伝子が含まれています。 TAの挿入部位は、P.のゲノムへの効率的な統合を可能に緑膿菌菌株 。粘液性変異体を同定し、選択する際の精度は、アルギン酸塩の調節に関与する遺伝子座を決定する際の全体的な成功のために重要である。ムコイドおよび非ムコイド単離物の例は、 図1に示されている。

より正確に粘液性変異体を同定するために、完成した動詞は、複数の大規模なプレート(150ミリメートル)上にプレーする必要があります。 CELLの混合物は、滅菌PBSに再懸濁し、PIAプレートプラスゲンタマイシン(300μg/ ml)を上に分散することでめっきされるべきである。 PBS中で細胞混合物の希釈液を1,000〜3,000個のコロニー/プレートとの間に持つことを目標にプレート上に分散されます。上記のプロトコルに基づいて、それぞれの結合は、15〜20大のプレートの上に〜2万変異体のバンクを生成する必要があります。 37℃でのプレートのための最適なインキュベーション時間は24〜36時間の間である。原因アルギン酸塩の過剰産生に、粘液性コロニーは透明又は白色であることとクリーミーまたはぬるぬるな外観を持っている必要があります。ムコイドのコロニーを識別することができない場合、次いで室温でさらに24〜36時間インキュベートする。ムコイド突然変異体は、最高のゲンタマイシンを正規PIAプレート上に3回通すことにより単離される。この時間の間に、粘液性の表現型の安定性を決定することができます。精製された粘液性コロニーのiPCRによるゲノムDNA抽出および遺伝子の同定のために使用される。 iPCRの産物をアガロースゲルエルを用いて可視化することができるectrophoresis( 図2)。成功した場合は、適切なサイズで、単一のアンプリコンがあるはずです。制限酵素消化およびライゲーションを受けたPAO1ゲノムDNAを陰性対照として使用することができる。 図2に示すように、PAO1におけるiPCRのアンプリコンが存在しないことがあり、しかし、我々は、それぞれ〜1,400 bpおよびPAO1-VE2とPAO1-VE13で〜千塩基対の単一のアンプリコンを検出する。これらのアンプリコンのサイズは、PAO1-VE2で、内部PAO1-VE13中PA5484(kinB)PA4033(mucE)のプロモーター領域にhimar1マリナートランスポゾンの挿入に対応している。 iPCRのアンプリコンのDNA配列決定はGM5OUTプライマーを用いて実施されるべきである。標的配列を解析するためにベーシックローカルアラインメント検索ツール(BLAST)を使用する場合、PFACおよびTAジヌクレオチドの5 '末端に逆方向反復は、P. himar1のゲノム中の挿入部位及び向きをマーク緑膿菌図2 得>)。

図1
図1。ミニhimar1マリナートランスポゾンベクター、PFAC、および粘液性変異体の表現の概略図。プラスミドPFACは、選択のための2つの逆方向反復とhimar1マリナートランスポゾン要素、およびゲンタマイシン耐性カセット(aacC1)が含まれ、非常に活発himar1トランスポザーゼをコードする遺伝子、および条件付きレプリコン。ミニhimar1マリナートランスポゾンは、P.高密度挿入を引き起こす可能性がありますなぜなら基板(TAジヌクレオチド)の豊富さの緑膿菌 。 2 Pのゲノム中のTAジヌクレオチドの数緑膿菌の株PAO1およびPA14は赤で表示されます。赤い矢印は、この手順を使用して識別粘液性変異体を示している。om/files/ftp_upload/51346/51346fig1highres.jpg "ターゲット=" _blank ">この図の拡大版を表示するには、こちらをクリックしてください。

図2
図2。 PAO1(ネガティブコントロール)、PAO1-VE2(1396 BP)、およびPAO1-VE13(999: 前方 Gm3OUTおよびリバースGm5OUTプライマーと1 KBのはしごを使用してのiPCR増幅の代表のiPCRと配列決定の結果A)1%アガロースゲル電気泳動BP)。 Pの3つの株からのゲノムDNA 緑膿菌を抽出しセルフライゲーションに続いてSalI制限酵素で消化し ​​た。テキスト。B)に記載のように閉環状DNAをiPCRのための鋳型として使用したPAO1基準を用いた比較ゲノム配列分析は、himar1マリンの正確な位置を決定するPAO1-VE2とPAO1-VE13におけるERトランスポゾン挿入。赤でラベルされたシーケンスは、PFAC内の逆方向反復の5 '末端を示している。 TAの挿入部位には下線を付した。これらの二つの配列のBLAST検索は、PAO1のゲノム内himar1トランスポゾンの正確な位置と方向をマップします。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

この方法は、これらの変化と他のシュードモナス種に使用することができることに留意することが重要である:P.インキュベートフルオレッセンスおよびP. 30℃でプチダ 、およびP. 42℃でのストチェリ ; P. stuzeriはゲンタマイシンの150μg/ mLのを追加したLBプレート上で培養しなければならない。ステップ1.11、Pスタッツェリ細胞をLB500μlの代わりに、1ミリリットルに転送する必要があります。さらに、このプロトコルの2の重要なステップがあります。まず、受容株は、適切な温度で培養する必要があります。例えば、PAO1 15は、組換えの頻度を増加させるために42℃でインキュベートされるべきである。受容株が正しい温度で培養されていない場合場合は、変異体ライブラリーの効率が大幅に低下した。第二に、iPCRのは非常に再現性があるが、gDNAを、完全に円形の共有結合的に閉じられたDNAはDNA連結を介して行うことができることを確実にするために消化されている必要があります。私これが正しく行われているF、iPCRの産物をアガロースゲル上で一つのバンドとして表示されます。複数のバンドが確認された場合、それらは複数の挿入変異体に存在することを示す。私たちは、iPCRの結果が強く、当社のサザンブロット結果(約100%)と相関していたことがわかった。したがって、変異体あたりのiPCRは挿入の数のサザンブロット分析の代わりに使用することができる。

PFACにおけるミニhimar1マリナートランスポゾンは転写ターミネーターを持っていない、それはゲンタマイシンカセットの発現を駆動するσ70依存性プロモーターを介して調節されている。我々は、himar1挿入位置及び向きが、特定の遺伝子の調節に影響を変化させることが観察された。遺伝子の中間に組み込まれた場合に遺伝子が不活性化した。この例は、感覚キナーゼ遺伝子PAO1(PAO1-VE13)でmucoidyへの変換を引き起こすkinB(PA5484)11の不活性化である。さらに、それはUもできます遺伝子の発現を調節するp型、遺伝子と同じ向きに上流コード領域の挿入された場合。この例はhimar1がmucE(PA4033)13の発現を駆動するPAO1-VE2ある。このプロトコルの制限は、成長のために必須でないだけ調節遺伝子を同定することができることである。さらに、この方法を用いて同定されるムコイド突然変異体は、天然に存在しなくてもよい。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者Hongwei D. YuはProgenesisテクノロジーズ、LLCの最高科学責任者および共同設立者です。

Acknowledgments

この作品は、生物医学研究の卓越性のためのウェストバージニア州のアイデアネットワークにアメリカ航空宇宙局ウェストバージニアスペースグラントコンソーシアム(NASA WVSGC)、嚢胞性線維症財団(CFF-YU11G0)およびNIH P20RR016477とP20GM103434によってサポートされていました。我々は、この作品について技術的な支援のためにVonya M·アイジンガーに感謝します。

Materials

Name Company Catalog Number Comments
Luria Broth Difco 240230 via Fisher Scientific
Pseudomonas isolation agar Difco 292710 via Fisher Scientific
Small Plates (100 O.D. x 10 mm) Fisher Scientific 08-757-13
Large Plates (150 O.D. x 15 mm) Fisher Scientific 08-757-14
Glycerol Fisher Scientific BP229-4
Benchtop Shaking Incubator New Brunswick Scientific Innova 4080 shake at 200 rpm
Cabinet Incubator VWR 1540
Benchtop Microcentrifuge Sorvall 75-003-287 via Fisher Scientific
SmartSpec Plus Spectrophotometer Bio-Rad 170-2525 or preferred method/vendor
Diposable Inoculation Loops Fisher Scientific 22-363-597
1.5 ml Microcentrifuge Tubes Fisher Scientific 05-408-129
2.0 ml Cryogenic Vials Corning 430659 via Fisher Scientific
15 ml Tubes Fisher Scientific 05-539-12
Skim Milk Difco DF0032-17-3 via Fisher Scientific
DNeasy Blood and Tissue (250)  Qiagen 69506 or preferred method/vendor
QIAquick PCR Purification Kit (250) Qiagen 28106 or preferred method/vendor
QIAprep Spin Miniprep Kit (250)  Qiagen 27106 or preferred method/vendor
FastLink II DNA Ligation Kit Epicentre Technologies LK6201H via Fisher Scientific
Accu block Digital Dry Bath  Labnet NC0205808 via Fisher Scientific
Sal1, restriction endonuclease New England BioLabs R0138L
EasyStart Micro 50 Molecular BioProducts 6020 via Fisher Scientific
Taq DNA Polymerase New England BioLabs M0267L
iCycler, Thermocycler Bio-Rad 170-8740
LE agarose Genemate 3120-500 via Fisher Scientific
Gentamycin Sulfate Fisher Scientific BP918-1
2.0 ml Cryogenic Vials Corning 430659 via Fisher Scientific

DOWNLOAD MATERIALS LIST

References

  1. Govan, J. R., Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60, 539-574 (1996).
  2. Chitnis, C. E., Ohman, D. E. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol. Microbiol. 8, 583-593 (1993).
  3. Franklin, M. J., et al. Pseudomonas aeruginosa AlgG is a polymer level alginate C5-mannuronan epimerase. J. Bacteriol. 176, 1821-1830 (1994).
  4. Franklin, M. J., Ohman, D. E. Mutant analysis and cellular localization of the AlgI, AlgJ, and AlgF proteins required for O acetylation of alginate in Pseudomonas aeruginosa. J. Bacteriol. 184, 3000-3007 (2002).
  5. Deretic, V., Gill, J. F., Chakrabarty, A. M. Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa. J. Bacteriol. 169, 351-358 (1987).
  6. Mathee, K., McPherson, C. J., Ohman, D. E. Posttranslational control of the algT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J. Bacteriol. 179, 3711-3720 (1997).
  7. Boucher, J. C., Schurr, M. J., Yu, H., Rowen, D. W., Deretic, V. Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity. Microbiology. 143, 3473-3480 (1997).
  8. Martin, D. W., Holloway, B. W., Deretic, V. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J. Bacteriol. 175, 1153-1164 (1993).
  9. Damron, F. H., Goldberg, J. B. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa. Mol. Microbiol. 84 (4), 595-607 (2012).
  10. Browne, P., Barret, M., O'Gara, F., Morrissey, J. P. Computational prediction of the Crc regulon identifies genus-wide and species-specific targets of catabolite repression control in Pseudomonas bacteria. BMC Microbiol. 10, 300 (2010).
  11. Damron, F. H., Qiu, D., Yu, H. D. The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J. Bacteriol. 191, 2285-2295 (2009).
  12. Damron, F. H., et al. Analysis of the Pseudomonas aeruginosa regulon controlled by the sensor kinase KinB and sigma factor RpoN. J. Bacteriol. 194, 1317-1330 (2012).
  13. Qiu, D., Eisinger, V. M., Rowen, D. W., Yu, H. D. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 104, 8107-8112 (2007).
  14. Schurr, M. J. Which bacterial biofilm exopolysaccharide is preferred, Psl or alginate. J. Bacteriol. 195, 1623-1626 (2013).
  15. Wong, S. M., Mekalanos, J. J. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 97, 10191-10196 (2000).
  16. Lampe, D. J., Akerley, B. J., Rubin, E. J., Mekalanos, J. J., Robertson, H. M. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. U.S.A. 96, 11428-11433 (1999).

Tags

免疫学、問題85、
アルギン酸塩産生に関連する新規遺伝子の同定<em&gt;緑膿菌</em使用&gt;ミニ<em&gt; himar1</em&gt;マリナートランスポゾンによる突然変異誘発
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Withers, T. R., Yin, Y., Yu, H. D.More

Withers, T. R., Yin, Y., Yu, H. D. Identification of Novel Genes Associated with Alginate Production in Pseudomonas aeruginosa Using Mini-himar1 Mariner Transposon-mediated Mutagenesis. J. Vis. Exp. (85), e51346, doi:10.3791/51346 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter