Summary

Gebruik van de zachte agar Colony Formation Assay aan Remmers van tumorigeniciteit in borstkankercellen Identificeer

Published: May 20, 2015
doi:

Summary

Here, we document the use of the soft agar colony formation assay to test the effects of a peptidylarginine deiminase (PADI) enzyme inhibitor, BB-Cl-amidine, on breast cancer tumorigenicity in vitro.

Abstract

Given the inherent difficulties in investigating the mechanisms of tumor progression in vivo, cell-based assays such as the soft agar colony formation assay (hereafter called soft agar assay), which measures the ability of cells to proliferate in semi-solid matrices, remain a hallmark of cancer research. A key advantage of this technique over conventional 2D monolayer or 3D spheroid cell culture assays is the close mimicry of the 3D cellular environment to that seen in vivo. Importantly, the soft agar assay also provides an ideal tool to rigorously test the effects of novel compounds or treatment conditions on cell proliferation and migration. Additionally, this assay enables the quantitative assessment of cell transformation potential within the context of genetic perturbations. We recently identified peptidylarginine deiminase 2 (PADI2) as a potential breast cancer biomarker and therapeutic target. Here we highlight the utility of the soft agar assay for preclinical anti-cancer studies by testing the effects of the PADI inhibitor, BB-Cl-amidine (BB-CLA), on the tumorigenicity of human ductal carcinoma in situ (MCF10DCIS) cells.

Introduction

Both non-transformed (normal) and transformed cells can readily proliferate in a 2D monolayer culture. This form of adherent cell growth is quite dissimilar from that which occurs in vivo where, in the absence of mitogenic stimulation, cells do not often rapidly divide within their microenvironment. The soft agar assay on the other hand is distinct from 2D culture systems because it quantifies tumorigenicity by measuring a cell’s ability to proliferate and form colonies in suspension within a semi-solid agarose gel1. In this setting, non-transformed cells are unable to rapidly propagate in the absence of anchorage to the extracellular matrix (ECM) and undergo apoptosis, a process known as anoikis. In contrast, cells that have undergone malignant transformation lose their anchorage dependence due to activation of signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/Akt and Rac/Cdc42/PAK. Therefore, these cells are able to grow and form colonies within the semi-solid soft agar matrix2.

A common use of the soft agar assay is to test whether specific compounds, such as PADI inhibitors, are able to suppress tumor growth in vitro. In general, colony count or colony sizes are quantitative read-outs from the assay that can be compared between control and treatment groups to assess differences in cellular tumorigenicity. Therefore, if one finds that colony formation is inversely correlated with increasing drug concentration, then a conclusion could be drawn that the drug is an effective inhibitor of tumorigenicity in vitro. On the other hand, if the drug does not affect colony formation, the drug is either not at the appropriate dosage or it is not an effective tumorigenic inhibitor. Aside from using a soft agar assay to test the anti-tumor effect of a drug, this assay can also be used to probe the relationship between a specific gene and tumorigenesis. For example, the effect of suppressing PADI2 expression on tumorigenicity can be addressed by PADI2-specific siRNA treatment.

PADIs are calcium-dependent enzymes that post-translationally modify proteins by converting positively charged arginine residues into neutrally charged citrulline in a process known as citrullination or deimination3-5. We have recently found that peptidylarginine deiminase 2 (PADI2) may function as a novel breast cancer biomarker and that PADI inhibitors represent candidate therapies for early stage breast cancers6. For example, we have previously demonstrated that a “pan-PADI” inhibitor, Cl-amidine, suppresses the proliferation of breast cancer cells using 2D monolayers and that the inhibitor suppressed the growth of 3D tumor spheroids6. In this report, we extend these studies, and highlight the utility of the soft agar assay, by testing the efficacy of a new PADI inhibitor, BB-CLA, in suppressing the growth of MCF10DCIS breast cancer colonies7. We note that we used MCF10DCIS cells for this experiment because they are oncogenic derivatives of non-transformed human MCF10A cells and because they contain high steady state levels of PADI2 protein8. We hypothesize that PADI2 enzymatic activity plays a key role in the tumorigenicity of this cell line and that BB-CLA-mediated inhibition of PADI2 activity will suppress cancer progression.

Protocol

1. Bereiding van 3% 2-hydroxyethyl Agarose In een schone, droge 100 ml glazen fles, voeg 0,9 g 2-hydroxyethyl agarose (Agarose VII), gevolgd door 30 ml gedestilleerd water. Magnetron het mengsel gedurende 15 sec en zachtjes wervelen. Herhaal deze stap ten minste nog drie keer tot de agarose poeder volledig oplost. Autoclaaf de oplossing bevattende fles voor 15 min. Laat de agarose oplossing afkoelen tot kamertemperatuur vóór verder gebruik. Bewaar de oplossing bij kamertemperat…

Representative Results

De zachte agar kolonievorming test kan worden gebruikt voor een groot aantal toepassingen documenteren van de tumorigeniciteit van kankercellen. Een groot voordeel van deze techniek is dat de halfvaste matrix selectief bevordert de groei van cellen die kunnen prolifereren in een verankering-onafhankelijke wijze. Deze eigenschap is vooral vertoond door kankercellen, maar niet normale cellen. We gebruiken voornamelijk deze techniek om de effectiviteit van tumorgroei inhibitie testen van drugs en testen op het effect van o…

Discussion

De mate van kolonievorming in zachte agar varieert afhankelijk van het celtype 9. Daarom is het aantal cellen te beginnen moet worden geoptimaliseerd en aangepast. Voorgestelde start bereik ligt tussen 5 x 02-01 oktober x 10 4 cellen per putje met behulp van een 6-wells plaat. Bovendien varieert koloniegrootte afhankelijk van de groeisnelheid van elke cel. Daarom wordt een vooraf gedefinieerde een cut-off voor kolonie maat die u nodig individuele kolonies voor downstream kwantitatieve an…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We are thankful to Dr. Richard Cerione, Dr. Marc Antonyak, and Kelly Sullivan, Cornell University, for providing technical advice, and to Dr. Gerlinde Van de Walle, Cornell University, for sharing their Olympus CKX41 inverted microscope.

Materials

Zeiss Axiopot Carl Zeiss Microscopy 1021859251
Inverted Microscope Olympus CKX41
DMEM/F-12 Lonza BioWhittaker 12-719F
HyClone Donor Equine Serum Fisher Scientific SH30074.03
Penicillin Streptomycin Life Technologies 15140-122
2-Hydroxyethylagarose: Type VII, low gelling temperature Sigma-Aldrich 39346-81-1

References

  1. Hamburger, A. W., Salmon, S. E. Primary bioassay of human tumor stem cells. Science. 197, 461-463 (1977).
  2. Wang, L. H. Molecular signaling regulating anchorage-independent growth of cancer cells. Mt Sinai J Med. 71 (6), 361-367 (2004).
  3. Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J., Pruijn, G. J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays. 25 (11), 1106-1118 (2003).
  4. Horibata, S., Coonrod, S. A., Cherrington, B. D. Role for peptidylarginine deiminase enzymes in disease and female reproduction. J Reprod Dev. 58 (3), 274-282 (2012).
  5. Mohanan, S., Cherrington, B. D., Horibata, S., McElwee, J. L., Thompson, P. R., Coonrod, S. A. Potential role of peptidylarginine deiminase enzymes and protein citrullination in cancer pathogenesis. Biochem Res Int. , 895343 (2012).
  6. McElwee, J. L., et al. Identification of PADI2 as a potential breast cancer biomarker and therapeutic target. BMC Cancer. 12, 500 (2012).
  7. Knight, J. S., et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis. , 1-8 (2014).
  8. Miller, F. R., Santner, S. J., Tait, L., Dawson, P. J. MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl cancer Inst. 92, 1185-1186 (2000).
  9. Fan, D., Morgan, L. R., Schneider, C., Blank, H., Fan, S. Cooperative evaluation of human tumor chemosensitivity in the soft-agar assay and its clinical correlations. J Cancer Res Clin Oncol. 109, 23-28 (2000).
  10. Hamburger, A. W., White, C. P., Dunn, F. E., Citron, M. L., Hummel, S. Modulation of human tumor colony growth in soft agar by serum. Int J Cell Cloning. 1 (4), 216-229 (1983).
  11. Anderson, S. N., Towne, D. L., Burns, D. J., Warrior, U. A high-throughput soft agar assay for identification of anticancer compound. J Biomol Screen. 12, 938-945 (2007).

Play Video

Cite This Article
Horibata, S., Vo, T. V., Subramanian, V., Thompson, P. R., Coonrod, S. A. Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. J. Vis. Exp. (99), e52727, doi:10.3791/52727 (2015).

View Video