Summary

三氯化铁诱发血栓形成小鼠模型上的颈动脉和肠系膜血管

Published: June 29, 2015
doi:

Summary

The FeCl3 induced thrombosis model in mice is described herein. A method to monitor thrombus growth by intravital microscopy observation on a mesenteric vessel and by blood flow measurement in the carotid artery is presented.

Abstract

Severe thrombosis and its ischemic consequences such as myocardial infarction, pulmonary embolism and stroke are major worldwide health issues. The ferric chloride injury is now a well-established technique to rapidly and accurately induce the formation of thrombi in exposed veins or artery of small and large diameter. This model has played a key role in the study of the pathophysiology of thrombosis, in the discovery and validation of novel antithrombotic drugs and in the understanding of the mechanism of action of these new agents. Here, the implementation of this technique on a mesenteric vessel and carotid artery in mice is presented. The method describes how to label circulating leukocytes and platelets with a fluorescent dye and to observe, by intravital microscopy on the exposed mesentery, their accumulation at the injured vessel wall which leads to the formation of a thrombus. On the carotid artery, the occlusion caused by the clot formation is measured by monitoring the blood flow with a Doppler probe.

Introduction

参与血栓的发展和抗血栓药物的有效性的评价机制的研究需要很好地建立实验动物模型。大型动物模型是第一个被使用,因为它们提供大血管更类似于人类比啮齿类1。然而,成本高,需要较大的设施和操纵他们的困难是基因主要缺点它们的使用和大型动物,现在仅限于后期临床前研究,一旦对啮齿动物的初步试验给出结论性的结果2。用转基因和基因敲除株和它们的小尺寸,最大限度地减少所需的体内测试抗血栓药物的量广泛的可用性,小鼠主要用于血栓形成研究。因此,已经开发了在小鼠中3几种型号血栓形成性疾病的。

许多老牌血栓模型扰乱intim层的血管壁,然后由子内皮细胞外基质到血流诱导血块4的形成的曝光。血栓可能导致胶原的曝光这触发血小板活化和/或从组织因子的曝光其激活凝血级联5。然后几种技术被用来实现初始血管损伤。 Pierangeli 等人开发了一种机械破碎模型上的股静脉6一个显微工具。 Kikushi 等人描述了一种模型,该模型包括在相片反应性化合物(玫瑰红),其积聚在血管内皮细胞随后用绿光(540纳米)7感兴趣的血管壁的特定激励的脂质双层的施用。这次受伤也可以通过短高强度的脉冲激光照射诱发8。另一种技术首先对大鼠的颈动脉既定包括在氯化铁的局部施用(的FeCl 3)9。在这种情况下,从通过的FeCl 3产生自由基的容器剥蚀结果导致内皮细胞10的脂质过氧化和破坏。的损伤引起几个粘附分子触发血小板粘附和聚集以及白细胞募集的表达。它已经证明,白细胞,特别是嗜中性粒细胞,在血液凝固级联导致血栓形成11的活化中发挥至关重要的作用。这种方法非常适合于重现凝血级联;研究者必须牢记的是,在该小鼠模型中,血栓形成通常诱导健康血管而血栓在人类中是主要发生在患病 。动脉粥样硬化的血管。

因为此模型是非常简单的实现,也是有效的小鼠,它现在是最常用血栓形成模式l对于小动物体内研究。此外,这种技术提供了以诱导在各种血管血栓形成的可能性。靶血管可以是动脉或大直径(颈动脉,股腔静脉)或小直径(肠系膜,提睾肌)12-14脉。最近,也有人用在大脑中动脉近端制定行程15的模型。血栓形成可以直接血小板和白细胞的荧光标记后通过活体显微镜观察或通过测量血流量减少与温度探针或多普勒探针12,16,17监测。几个参数,如阻断时间,血栓形成时间或血栓大小然后可以进行调查。容器之间的生理差异中获得的血栓显著变化调查结果。因此,调查人员根据他们想measu参数通常选择目标船只重新和/或疾病的设置,他们希望调查。通常,在颈动脉的模型是更相关的动脉粥样硬化与心肌梗死或中风而上腔静脉的研究更相关于深静脉血栓形成研究研究。不同的容器的访问也决定用来衡量血栓增长的方法。例如,肠系膜血管很容易就可以访问使得该模型适合于活体显微镜观察和血栓形成的动力学的研究。颈动脉是不太容易,但做大,使血流量的测量,并提供研究血栓闭塞一个很好的模式。

氯化铁诱发血栓模型在这病理的认识提供了巨大的进步。它已被用于在许多研究集中于血管性血友病因子在血栓形成18,19的作用。结合遗传MODIfication技术中,已经允许参与血栓形成病症的许多特定基因的鉴定。拉姆拉尼 。例如已经表明,一敲在JAK2 V617F基因都与一个加速形成不稳定凝块20的相关联。 Zhang 等人调查了该P2Y12血小板受体的生理含义,并表明转基因小鼠过度表达特别这种受体在血小板只,显示了更快速,稳定的血栓形成的肠系膜动脉的FeCl 3 21受伤。的组织型纤溶酶原激活剂(tPA)和尿激酶型纤溶酶原激活物(uPA)的纤维蛋白降解过程中的关键作用也进行了研究在该方法22。此外,该模型还提供了测试的许多新颖的药物的血纤维蛋白溶解能力在体内的简单且精确的方式。例如,Wang 等人已经用这种模型对于第靶向激活的血小板23的新型重组纤溶酶原激活电子临床验证。这种方法也使治疗性蛋白蜱,吸血蝙蝠,和蚊子的唾液或蛇与目标24-27的特定标识的毒液中分离的验证。这些实施例说明了氯化铁模型的多功能性。在这篇文章中,我们专注于两种方法,研究在两个不同的容器类型三氯化铁诱发血栓形成;肠系膜血管和颈动脉。

Protocol

所有涉及的动物实验均批准了阿尔弗雷德医学研究和教育专用区动物伦理委员会(E /二千○十五分之一千五百三十四/ B)。全身麻醉下进行所有的手术操作和动物没有在任何阶段经历痛苦。描述的所有实验都是非恢复。 1.准备切细带的滤纸(1毫米×2mm)的。 新鲜制备2溶液的4%氯化铁(重量/体积)和6%(重量/体积)稀释到去离子水中。制备罗丹明6G溶液0.3%?…

Representative Results

荧光活体显微镜观察肠系膜将揭示罗丹明6G的积累标记的血小板和白细胞沿着血管壁由三氯化铁3人受伤。渐进形成局部血栓在200μm的肠系膜血管( 图1)进行监测。血栓慢慢出现,显然是暴露的第一分钟到氯化铁后可识别( 图1,T = 60秒)。 40秒的去除浸泡的FeCl 3滤纸之后,血栓形成迅速的进展,并且最后存在于所观察到的整个容器部分的壁( <str…

Discussion

氯化铁诱发血栓模型是一个很好的研究工具。如该研究中,这是非常容易实现,并且与活体显微镜或多普勒流量计结合使用时,它提供了血栓形成一个良好的实时监控。调整时间曝光和的FeCl 3的浓度,它也提供了,以产生非闭塞性或闭塞性血栓的可能性。

但是,这种方法也有一定的局限性。在颈动脉中,主要的缺点是,虽然阻塞时间可以有效地被修改,则该模型的再…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢来自喜悦姚明和卡伦博士Alt键的技术支持,以及资金从NHMRC和NHF。

Materials

Whatman chromatography paper GE Healthcare 3030917
Iron (III) chloride 40 % (w/v) VWR 24212.298
Rhodamine 6G Sigma R4127
Inverted microscope  Olympus IX81
Digital black-and-white camera  Olympus XM10
Doppler flowmeter Transonic TS420
Nano-doppler flow probe Transonic 0.5 PBS
Ketamine Hospira  0409-2051-05
Xylazine (Rampun) Bayer 75313 
Petri dish Sarstedt 82.1472
Insulin syringe (29 G) BD Ultra-Fine 326103
Cotton tipped applicators BSN medical 211827A
Dynek dysilk sutures Dynek Pty Ltd CS30100
Dulbecco's phosphate buffer saline (PBS) Gibco life technologies 21600-069
Heating pad Kirchner T60

References

  1. Leadley, R. J., Chi, L., Rebello, S. S., Gagnon, A. Contribution of in vivo models of thrombosis to the discovery and development of novel antithrombotic agents. J Pharmacol Toxicol Methods. 43 (2), 101-116 (2000).
  2. Johnson, G. J., Griggs, T. R., Badimon, L. The utility of animal models in the preclinical study of interventions to prevent human coronary artery restenosis: analysis and recommendations. On behalf of the Subcommittee on Animal, Cellular and Molecular Models of Thrombosis and Haemostasis of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 81 (5), 835-843 (1999).
  3. Day, S. M., Reeve, J. L., Myers, D. D., Fay, W. P. Murine thrombosis models. Thromb Haemost. 92 (3), 486-494 (2004).
  4. Sachs, U. J. H., Nieswandt, B. In vivo thrombus formation in murine models. Circ Res. 100 (7), 979-991 (2007).
  5. Furie, B., Furie, B. C. Mechanisms of thrombus formation. N Engl J Med. 359 (9), 938-949 (2008).
  6. Pierangeli, S. S., Liu, X. W., Barker, J. H., Anderson, G., Harris, E. N. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost. 74 (5), 1361-1367 (1995).
  7. Kikuchi, S., Umemura, K., Kondo, K., Saniabadi, A. R., Nakashima, M. Photochemically induced endothelial injury in the mouse as a screening model for inhibitors of vascular intimal thickening. Arterioscler Thromb Vasc Biol. 18 (7), 1069-1078 (1998).
  8. Rosen, E. D., Raymond, S., et al. Laser-induced noninvasive vascular injury models in mice generate platelet- and coagulation-dependent thrombi. Am J Pathol. 158, 1613-1622 (2001).
  9. Kurz, K. D., Main, B. W., Sandusky, G. E. Rat model of arterial thrombosis induced by ferric chloride. Thromb Res. 60 (4), 269-280 (1990).
  10. Eckly, A., Hechler, B., et al. Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost. 9 (4), 779-789 (2011).
  11. Darbousset, R., et al. Involvement of neutrophils in thrombus formation in living mice. Pathol Biol (Paris). 62 (1), 1-9 (2014).
  12. Denis, C., Methia, N., et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis). Proc Natl Acad Sci U S A. 95 (16), 9524-9529 (1998).
  13. Wang, X., Hagemeyer, C. E., et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice. Circulation. 125 (25), 3117-3126 (2012).
  14. Wang, X., Smith, P. L., Hsu, M. -. Y., Ogletree, M. L., Schumacher, W. A. Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor. J Thromb Haemost. 4 (2), 403-410 (2006).
  15. Karatas, H., Erdener, S. E., et al. Thrombotic distal middle cerebral artery occlusion produced by topical FeCl(3) application: a novel model suitable for intravital microscopy and thrombolysis studies. J Cereb Blood Flow Metab. 31 (6), 1452-1460 (2011).
  16. Jirousková, M., Chereshnev, I., Väänänen, H., Degen, J. L., Coller, B. S. Antibody blockade or mutation of the fibrinogen gamma-chain C-terminus is more effective in inhibiting murine arterial thrombus formation than complete absence of fibrinogen. Blood. 103 (6), 1995-2002 (2004).
  17. Dubois, C., Panicot-Dubois, L., Merrill-Skoloff, G., Furie, B., Furie, B. C. Glycoprotein VI-dependent and -independent pathways of thrombus formation in vivo. Blood. 107 (10), 3902-3906 (2006).
  18. Navarrete, A. -. M., Casari, C., et al. A murine model to characterize the antithrombotic effect of molecules targeting human von Willebrand factor. Blood. 120 (13), 2723-2732 (2012).
  19. Rayes, J., Hollestelle, M. J., et al. Mutation and ADAMTS13-dependent modulation of disease severity in a mouse model for von Willebrand disease type 2B. Blood. 115 (23), 4870-4877 (2010).
  20. Lamrani, L., Lacout, C., et al. Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood. 124 (7), 1136-1145 (2014).
  21. Zhang, Y., Ye, J., et al. Increased platelet activation and thrombosis in transgenic mice expressing constitutively active P2Y12. J Thromb Haemost. 10 (10), 2149-2157 (2012).
  22. Schäfer, K., Konstantinides, S., et al. Different mechanisms of increased luminal stenosis after arterial injury in mice deficient for urokinase- or tissue-type plasminogen activator. Circulation. 106 (14), 1847-1852 (2002).
  23. Wang, X., Palasubramaniam, J., et al. Towards effective and safe thrombolysis and thromboprophylaxis: preclinical testing of a novel antibody-targeted recombinant plasminogen activator directed against activated platelets. Circ Res. 114 (7), 1083-1093 (2014).
  24. Decrem, Y., et al. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J Exp Med. 206 (11), 2381-2395 (2009).
  25. Ma, D., et al. Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood. 122 (25), 4094-4106 (2013).
  26. Lei, X., et al. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb Haemost. 111 (2), 279-289 (2014).
  27. Waisberg, M., et al. Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog. 10 (9), e1004338 (2014).
  28. Owens, A. P., Lu, Y., Whinna, H. C., Gachet, C., Fay, W. P., Mackman, N. Towards a standardization of the murine ferric chloride-induced carotid arterial thrombosis model. J Thromb Haemost. 9 (9), 1862-1863 (2011).
  29. Wang, X., Xu, L. An optimized murine model of ferric chloride-induced arterial thrombosis for thrombosis research. Thromb Res. 115 (1-2), 95-100 (2005).
  30. Tseng, M. T., Dozier, A., Haribabu, B., Graham, U. M. Transendothelial migration of ferric ion in FeCl3 injured murine common carotid artery. Thromb Res. 118 (2), 275-280 (2006).
  31. Bonnard, T., et al. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomater. 10 (8), 3535-3545 (2014).
  32. Boulaftali, Y., Lamrani, L., et al. The mouse dorsal skinfold chamber as a model for the study of thrombolysis by intravital microscopy. Thromb Haemost. 107 (5), 962-971 (2012).
  33. Konstantinides, S., Schäfer, K., Thinnes, T., Loskutoff, D. J. Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation. 103 (4), 576-583 (2001).
  34. Li, W., McIntyre, T. M., Silverstein, R. L. Ferric chloride-induced murine carotid arterial injury: A model of redox pathology. Redox Biol. 1 (1), 50-55 (2013).

Play Video

Cite This Article
Bonnard, T., Hagemeyer, C. E. Ferric Chloride-induced Thrombosis Mouse Model on Carotid Artery and Mesentery Vessel. J. Vis. Exp. (100), e52838, doi:10.3791/52838 (2015).

View Video