Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Genetics

CRISPR/Cas9突然変異誘発のためのサンドフライ(フレボトムスパパタシ)胚微小注射

Published: November 17, 2020 doi: 10.3791/61924

Summary

このプロトコルは、胚の採取、注射、昆虫飼育、同定、および目的の突然変異の選択など、砂ハエにおけるCRISPR/Cas9標的突然変異のステップを詳述する。

Abstract

サンドハエは リーシュマニア 種の自然ベクターであり、原虫寄生虫は皮病変から内臓病理に至るまで幅広い症状を生み出す。ベクター/寄生虫相互作用の性質を解読することは、 リーシュマニア の宿主への伝達をよりよく理解するために重要である。砂飛ぶベクトル能力を制御するパラメータ(すなわち、病原体を運び、伝達する能力)の中で、これらの昆虫に固有のパラメータが重要な役割を果たすることが示された。昆虫免疫応答は、例えば、 リーシュマニアに対するサンドフライベクター能力に影響を与える。このようなパラメータの研究は、これらの非モデル生物での使用に適応した遺伝子発現修飾の方法の欠如によって制限されている。小さな干渉RNA(siRNA)による遺伝子のダウンレギュレーションは可能ですが、技術的に困難であることに加えて、サイレンシングは機能の部分的な損失をもたらし、世代から世代へと伝えることはできません。CRISPR/Cas9技術による標的突然変異誘発は、最近 、フレボトムスパパタシ サンドフライに適応した。この技術は、特異的に選択された遺伝子座における転化可能な突然変異の生成につながり、目的の遺伝子を研究することを可能にする。CRISPR/Cas9システムは、後に非相同エンドジョイングレンス(NHEJ)または相同性駆動修復(HDR)のいずれかによって修復されたターゲット二本鎖DNA切断の誘導に依存しています。NHEJは、休憩の単純なクロージャで構成され、頻繁に小さな挿入/削除イベントにつながります。対照的に、HDRは、標的DNAと相同性を共有するドナーDNA分子の存在を修復のテンプレートとして使用する。ここでは、これまでにサンドフライベクターに適応した唯一のゲノム修飾技術であるNHEJを用いたCRISPR/Cas9による標的変異誘発に対するサンドフライ胚微小注入法を提示する。

Introduction

ベクター媒介性疾患は、絶え間ない進化における公衆衛生上の大きな脅威です。世界保健機関(WHO)によると、非常に異なる系統形成家族(蚊、ダニ、ノミなど)に広がる何百ものベクター種が膨大な数の微生物病原体の伝染を引き起こし、その結果、年間70万人以上の人が死亡する。ベクター昆虫の中で、フレボトミン砂ハエ(ディプテラ、サイコディダエ)は広大な群を構成し、80種の実証済みベクター種が異なる地理的領域で見られる明確な現象学的形質およびベクター能力を示す。彼らは リーシュマニア属の原虫寄生虫のベクターであり、リーシュマニアーゼの約130万人の新しい症例を引き起こし、年間約20,000〜30,000人の死亡を引き起こす。リーシュマニアーゼ臨床転帰は多様であり、自己制限的な皮病変から治療がない場合には致命的な内臓播種に至るまで症状が広がる。

砂のハエは厳密に地上の昆虫です。他のディプテラと比較して比較的長いライフサイクルは、温度、湿度、栄養などの異なるパラメータに応じて、最大3ヶ月間続きます。それは1つの胚段階(6〜11日)、4つの幼虫段階(合計23〜25日間持続する)と1つのプパル段階(9〜10日)とそれに続く変態と成人から構成される。砂のハエは飼育のために湿気と暖かい環境を必要とします。オスもメスも、花の蜜から野生で得られる糖を食べる。卵の生産のために血液の食事から得られるタンパク質を必要とするので、女性だけが血液供給剤である。

研究の重要な焦点は、伝染性感染症の発症につながるベクター/寄生虫相互作用の性質を特定することです。他のベクター昆虫と同様に、砂ハエに固有のパラメータは、病原体を宿主に運び、伝染する能力として定義されるベクター能力に影響を与えることを示している。例えば、フレボトムス・パパタシサンドフライミドグ細胞によるガレクチンの発現は、寄生虫表面成分を認識する受容体として作用し、リーシュマニアメジャー2,3に対するそれらのベクター能力に直接影響を及ぼすことができる。昆虫免疫応答経路は、免疫不全(IMD)、リーシュマニアメジャー4フレボトムスパパタシサンドフライベクター能力にも極めて重要である。感染性病原体の伝染を制御するベクター昆虫免疫応答経路の重要な役割は、Aedes aegypti5、6、7、ツェツェフライグロッシナ・モルシタンス8、ノフェレスガンビア9、10でも同様に報告されている。

サンドフライ/リーシュマニア相互作用の研究は、これらの昆虫での使用に適応した遺伝子発現修飾法の欠如によって制限されている。最近まで11、12、13、14の小さな干渉RNA(siRNA)による遺伝子のダウンレギュレーションのみが行われていた。この技術は、成人女性の微小注射に関連する死亡率によって制限され、機能の部分的な喪失しか起こらず、世代から世代へと伝達することができない。

CRISPR/Cas9技術は、砂ハエなどの非モデル生物の機能ゲノム研究に革命をもたらしています。バクテリオファージ15、16に対する防御のために原核生物中の適応免疫系から改変され、CRISPR Cas9システムは昆虫を含む優れた真核生物のゲノム編集ツールとして急速に適応されている。CRISPR/Cas9の標的ゲノム編集の原理は、特定のゲノム遺伝子座に対する単一ガイドRNA(sgRNA)の相補性に基づいています。Cas9ヌクレアーゼはsgRNAに結合し、sgRNAがその相補配列に関連するゲノムDNAに二本鎖DNA(dsDNA)破断を生み出します。Cas9-sgRNA複合体は、sgRNA中の17〜20の相補塩基によって標的配列に導かれ、dsDNAブレークは、次いで2つの独立した経路によって修復することができる:非相同端接合(NHEJ)または相同性指向修復(HDR)17。NHEJの修復は、休憩の単純な閉鎖を伴うが、頻繁に小さな挿入/削除イベントにつながる。HDRによるDNA修復は、ドナーDNA分子共有相同性を標的DNAとの間で修復用のテンプレートとして使用します。昆虫は両方の機械を持っています。

CRISPR/Cas9技術は、NHEJ修復経路を介して、選択された遺伝子座に突然変異を生成することができます。または、適切なドナーテンプレートを使用してHDR経路を介して、ノックインや発現レポーターなどのより複雑なゲノム編集戦略のために。サンドハエでは、免疫応答因子Relishの ヌル 変異対立体が 、フレボトムス・パパタシ4においてNHEJ媒介CRISPRを介して生成された。サンドフライ胚はまた、黄色をコードする遺伝子を標的とするCRISPR/Cas9ミックスを用いた別の研究で注射された。それでも、突然変異を運ぶ成人は18を産生しなかった。ここでは、NHEJ媒介CRISPR/Cas9による砂飛球標的突然変異誘発の詳細な方法について説明し、特にプロトコルの重要なステップである胚微小注射に焦点を当てる。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

砂のフライの供給のための血液源としてマウスを使用するは、国立衛生研究所(NIH)の実験動物のケアと使用のためのガイドの勧告に従って厳格に行われました。このプロトコルは、NIAID NIH(プロトコル番号LPD 68E)の動物管理および使用委員会によって承認されました。無脊椎動物はNIHガイドラインの対象とはなりません。

1. 針の準備 (図 1)

  1. ムーティとハレル19に記載されているように針とベベルを引っ張ります。簡単に言えば、二段ガラスのマイクロピペットの引き手に針を引っ張り、ホウケイ酸ガラスの毛細血管を使用する。
  2. 余分な細かい石を使用して、マイクロピペットベベラーに濡れたベベルで針を研ぎます。

2. 胚の収集とマイクロマニピュレーション (図 2)

  1. 注射日の5日前に、血中の砂はコロニー維持のために日常的に行われるように雌を飛ばす。サンドフライコロニーの飼育手順および必要な材料については、Lawyerら.1インキュベーターの昆虫を湿度70%、26°Cで全開発中に維持する 方法をご覧ください。
    1. ある日、血液を摂食後、サイドポート付きの石膏ポットで100-150のグループによって血液供給された女性を捕獲する。コロニーのメンテナンスのために通常、糖溶液(30%スクロース - 小さな綿のボールを浸すのに十分な量)でそれらを供給することによって、女性を維持します。
  2. 2-3日目の送血後は、石膏ポットを湿らせないでください。乾燥した基材にメスを保つことは、女性が湿った環境で卵を産むことを好むので、早期産を防ぎます。
  3. 5日目の送食後に、胚の採取、微小改分、および微小注射を行う。産卵室に湿ったろ紙を導入します。寝たての胚は完全に発達した絨毛を持たず、白く見える。白い胚の視覚化を容易にするために手順の間に黒いろ紙を使用してください。
  4. 口の吸引器を使用してサイドポートを介して産卵室に石膏ポットから女性の小さなグループを転送します。湿った基質(ろ紙)の存在は、オビポジットに女性を誘導する。
  5. 30〜60分後、チャンバーから新しく敷設された胚で濾紙を慎重に取り出します。濾紙と胚をペトリ皿に3時間まで保管します。この間、定期的にフィルターペーパーの水分レベルを評価して、湿った状態を保つようにします。この間、女性の新しいグループでステップ2.4〜2.6を繰り返し、できるだけ多くの胚を収集します。
  6. 注入のための顕微鏡のスライドを準備する:手動で非常に細かい絵筆で卵を一つずつ収集し、慎重にガラスカバースリップをトッピング顕微鏡スライドに置かれた湿った黒いフィルター紙の別の部分にそれらを転送します。
    1. 濾紙に水を加え、胚を湿らせたままにするのに十分ですが、カバースリップから離れたり、カバースリップの下に吸い込まれたりしないようにします。カバースリップに対して胚を並べる。カバースリップは、注射中に卵が転がり落ちるのを防ぐバックストップとして機能します。

3. 胚注射 (図 3)

  1. 卵の収集開始後2.5〜3時間の注射を開始します。室温および周囲の実験室の湿気で注入を行う。
  2. 整列した胚が湿った状態に保たられるように十分な水を持っていることを確認してください。
    注:注射中に胚を湿らせておくのが重要です。注射工程で湿っていないと、注射は、針が胚を突き刺すのに問題があるため困難になる。正しい量の水は、胚が周囲に半月板の水を持っている点ですが、カバースリップは水の上に浮かばず、胚がカバースリップの下に押し込みます。注射中に胚の周りの水の量を監視することが重要です。必要に応じて水を加え、胚を湿らせた状態に保ちます。
  3. ブラシを水で濡らし、濾紙の裏端に水を移して、慎重に水を加えます。この方法で水を追加すると、ゆっくりと制御された方法で水を追加できるため、胚を湿らせ続けるのに十分な量が追加されます。水が多すぎると胚が整列して浮き出てしまい、胚を注入するのが難しくなる。
  4. バックロード注入はマイクロインジェクション針に混入する。手描きのホウケイ酸ニードルフィラーを使用して、約0.5〜1μLの注射ミックスを針に加え、ゲルローディングピペットチップも使用できます。この注入ミックスは、市販の組換えCas9タンパク質(300 ng/μL)と混合した特定の遺伝子座を標的にするように設計された1つまたは複数のガイドRNA(それぞれ80 ng/μL)で構成されています。
  5. 射出圧力を30 psiから始め、注射トリガを押して針の先端から空気を排出します。これにより、注射ミックスが流れるよう注射の針先に強制的にします。この時点で、注入材料が流れ始めるまでホールド/定圧をゆっくりと上げ、針から流れる注入ミックスのポイントのすぐ下になるようにホールド/定圧を下げます。ゲート設定は、少量の材料が胚に入るのを見ることができるように、十分な注入材料を提供する必要があります。
    注: ショウジョウバエ や蚊に使用される他のプロトコルと同様のハロカーボンオイルの下での砂フライ胚の注入は、最初はテストされましたが、これらの注射の生存率は非常に低かった。上記のように湿った濾紙上の注射に切り替えることによって生存率が向上した。
  6. 胚の側面に針を挿入します。胚を突き刺すために針を助けるバックストップとして胚の後ろのカバースリップを使用してください。針を穏やかに取り除く前に、少量の注射ミックスを胚に送り込みます。
  7. 針を取り外した直後に、注射器を押して、針先から詰め戻り材料を取り除きます。これは、針が詰まるのを防ぐのに役立ちます。
  8. 次の胚に進みます。各注射の間に、濾紙が湿っていて、針が詰まっていることを確認してください。
  9. すべての胚が注入されたら、注入された胚の数を数え、ランニング集計を維持します。
  10. カバースリップが浮くように濾紙に水を加えてカバースリップを取り外します。この時点で、プローブ(昆虫のピンを先端に接着した木製アプリケータースティック)を使用してフィルターペーパーを所定の位置に保持し、指を使用して注入された胚からカバースリップを引き離します。
  11. カバースリップが取り除かれたら、濾紙から余分な水を消します。

4. 射出後の飼育 (G0)(図 4)

  1. 湿った濾紙のいくつかの層の上に胚を入れた濾紙をペトリ皿に入れ、湿度を維持します。他の胚を注入するために必要な時間の間、胚をここに保管してください。胚は、このような最大3時間保持することができる。注射後、彼らはゆっくりと茶色になります。
  2. すべての胚が注入されたら、手動で以前に湿らせた小さなサイズの石膏ポットに移します。各ポットにあまりにも多くの胚を入れて、それらの間の距離を維持しないでください, 個人間の可能な真菌汚染を避けるために.鍋をスクリーンで覆い、開発全体の間に湿度70%と26°Cのインキュベーターに維持されるサンドフライコロニーの卵のために通常行われるようにそれらを保存します。
  3. 1日目の注射後、損傷した胚と死んだ胚をすべてペイントブラシで取り除きます。0.5%プロピオン酸の100 μLを加えて、注入された胚を含む石膏ポットに滴下して、真菌汚染を制限します。注射プロセス中に損傷を受けた胚からの細胞質の放出は、真菌の成長に特に有利である。
  4. 毎日石膏ポットをチェックし、悪いまたは死んだ胚を削除します。真菌が存在する場合は、感染したすべての胚を除去し、0.5%プロピオン酸の数滴を追加します。
  5. 8日目から12日目の注射後の幼虫ハッチ。1日2回、新たに出現した幼虫を5〜10のグループで新しい石膏ポットに移します。少量の食べ物を加え、週に2〜3回食べ物をチェックしてください。
    1. 幼虫の食物の量を注意深く監視し、真菌汚染のリスクを大きく高めます。サンドフライ幼虫は、十分な食べ物がない場合、彼らはカニバリズムすることができますが、グループでより良い生き残ることができます。
  6. 幼虫が子犬になると、女性を処女として維持するためにセックスでそれらを分離します。生存者が多い場合は、男性を捨て、メスだけを飼います。
    注:男性と女性の両方が突然変異を運ぶことができ、送信することができます。しかし、メスは渡る前に処女を保たれなければならないので、セックスによってwt昆虫を分離することを避けるためにG0 注入された女性だけを使用する方が簡単です。成人の生存者の数が少なく、この場合、ソートされたwt処女女性と交配される場合、G0 の男性はバックアップとして保持することができます。

5. 変異型対立体の選択とスクリーニング (図5)

  1. ケージ内のwt雄を持つG0 メスをマスクロスする。通常のコロニーの維持のために行われるように、それらを完全に供給する血液。
  2. 1日は、授乳後、口の吸引器を使用して個々の石膏チューブに個々の石膏チューブに2〜3重量の男性と各G0 メスを転送します。毎日変わった小さな綿のボールに砂糖でハエを養い、石膏の水分が産卵に適していることを確認するために水の注射器を使用しています。
  3. G0 メスが卵を産んだ後(G1に対応)、後のジェノタイピングのために個々の、アノゲートされたエペンドルフチューブに体を集める。通常のwtコロニーに対して行われるように胚を維持する。
  4. 選択した方法によりG0 メスからDNAを抽出する。
  5. 例えばCRISPRカットの予想領域を取り巻くプライマーを用いたPCRアッセイを設計することにより、変異の存在を求めてDNAをスクリーニングする。
  6. 変容の証拠を示すG0メスによって敷設されたG1胚のみを保管する。これらのG1胚が子犬に発達する場合は、性別によってそれらを分離し、メスだけを保つ。同じG0メスからwtの男性にG1メスを渡り、それらを血液中に供給し、2〜3人の女性と4〜5人の男性の小グループで小さなサイズの容器に移します。
    注:すべてのG1 個体はユニークな突然変異を運ぶ機会があるので、生き残った個体の数が高すぎない場合は、G1 メスをwt男性と個別に横断する方が良いです。同じチューブに異なる突然変異を運ぶ複数の雌の場合はまれであるが、発生する可能性があります。このような場合、ジェノタイピング後に観察された場合、G2 子孫の女性は、wt雄に個別に交配する必要があります。この交配スキームは、子孫における複数の突然変異の可能性を回避する。
  7. 産卵後、G1 メスの体を収集し、突然変異のためにそれらをスクリーニングします。少なくとも1人の女性が突然変異の証拠を示した管だけを保管してください。
  8. 後の世代のために単一のペアをクロスします。産卵後、両親が突然変異の存在をスクリーニングする。両親が同じ突然変異のためにホモ接合体になるまで、各世代で繰り返します。一度特定されると、彼らはホモ接合突然変異株の創設者になります。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

ここで説明したCRISPR/Cas9マイクロインジェクションプロトコルは、前の出版物4で確立された前の出版物で確立されたサンドフライ変異体を生成するこのアプローチは、540人の個体のうち11人がこの処置を生き延び、そのうち9人が突然変異体であったため、非常に効率的な突然変異誘発を生じさせた。CRISPR/Cas9突然変異のガイドを設計する際、重要な最初のステップは、標的とする領域の周りの領域を配列することです。シーケンシングのテンプレートは、注射のための胚の供給源として使用される株からでなければなりません。ガイドを設計するために公開されたゲノム配列だけに頼るのは危険です。公開されたゲノムとプリガイド設計配列の違いは珍しいことではありません。場合によっては、対象遺伝子の周りの領域が配列決定されるときに、公開されたゲノム配列から設計されたガイドが存在しない(ハレル、個人的な観察)。さらに、この配列には、ジェノタイピング中に実際のCRISPR編集と誤りになる可能性のある一塩基多型(SNPs)が含まれる場合があります。したがって、ターゲット領域のシーケンスを確認することは、プロトコルの残りの部分が成功するために重要です。

マイクロインジェクションによる昆虫の遺伝子改変の成功は、主に2つの重要な側面に依存する:胚への損傷をできるだけ少なくして、開発中の適切な時期に物質(タンパク質、プラスミド、またはmRNA)の送達。そして処置を生き残り、子孫を生み出す強く、健康な昆虫の飼育。 図2に記載されたこの手順の初期段階は、wtコロニーからの雌の血液供給から始まり、5日後に胚採取と微小注射に進む。第2段階は、注入された胚を成人まで飼育し、適切な十字架を作り、目的の突然変異を同定し、単離することである。

注射用の胚は30〜60分間収集されるため、オベージ後の数時間の相対年齢を決定することができます。胚は、注射開始前に3時間の発達を許される。昆虫の発達のこの時間枠は、胚が注射を生き残ることを可能にする。この老化期間の後、胚は準備された注射スライドに集め、胚は細かいブラシを使用してカバースリップ端に対して所定の位置に転がされる。最終的な構成は 図 3Aに示されています。胚が座っているカバースリップエッジに半月板が形成されるように、濾紙を十分に濡らすることが重要です。あまりにも多くの水と胚はカバースリップ端から押し出されます。少なすぎると、胚がカバースリップの下に引き出されます。胚は湿気を保つ必要があり、そうでなければ胚膜を注入するのが難しくなります。カバースリップエッジはバックストップとして機能し、針がエッジに押し付けられたときに胚を貫通することを可能にする。針がスムーズに浸透することを可能にする鋭い針とバックストップの組み合わせです。

最も成功したマイクロインジェクションプロトコルと同様に、注入される胚に適した良好なマイクロ注射針が重要である。良い、鋭い針は、材料が注射後に逃がすことを許さずに容易に胚を貫通する針として定義される。針が胚に滑り込み、浸透中に胚膜のくぼみがほとんどなく、針が引き抜かれた後の胚からの物質漏れがない場合、良好な浸透が明らかである。良い鋭い針は細かい点に来る針を作り出す針の引き手の設定を使用して作り出される(図1A)。引っ張られた針は長すぎるテーパーを持つべきではありません。それ以外の場合、テーパーの大部分の部分(図1B)では針の内腔が非常に狭くなり、注射圧を十分に高くして、針を通して材料を押し付け難くなる。このプロトコルでは、ベベド針が使用された。針を引っ張って、ベベルするプロセスは、ムーティとハレル19に記載されています。長期間にわたって発生する砂飛の胚の場合、胚への損傷を最小限に抑える鋭利な針を持つことは特に重要であり、注射部位で物質が漏れるのを防ぐ。胚形成物質が胚の注射後に漏れるとき、この物質はカビおよび真菌の成長のための豊富な媒体である。より短い期間で発達する胚では、胚が発達し、カビが問題になる前に孵化することができる。注射後に胚形成を目に見えて漏らしている胚は、除去する必要があります。

注射の際には、細かい絵筆を濡らしてろ過紙に触れ、必要に応じて水の半月板が胚の基部に入るまで繰り返し、水を加える必要があります。注射日の相対湿度への注意が必要です。湿度の低い日には、より多くの水を加える必要があります。注射が完了すると、カバースリップがわずかに浮くように、少し余分な水が濾紙に追加され、取り除きが容易になります。カバースリップが取り除かれると、注入された胚を含むろ紙を吸引することができるので、濾紙はほとんど湿っていない。胚は、細かい絵筆を使用して孵化するための湿った石膏ポットに移すことができます。この段階では、胚は非常に壊れやすいので、プロセスは非常に慎重に行われなければなりません。また、カビの生った胚を除去し、真菌汚染の広がりを制限できるように、胚が互いに触れるのを防ぐことも重要です。

注射後、G0 注入胚は、通常の飼育手順に従って石膏ポットに保管される。彼らが孵化するまで、注入された胚ポットは、不健康な胚を除去するために1日1回チェックする必要があります。 図4Aは 、産卵の日から成人期までのG0 個体飼育の予想タイムラインを示す。 図4B は、健康で保持されるべきG0 胚の例を示しています。損傷を受けたり、真菌によって汚染されたり、乾燥したり、変形したりして廃棄する必要があります。G0 注入された個体は、変異型対立胞のモザイクであると考えられている。潜在的変異型対立体を同定する方法は、予想される切断部位を取り巻く領域のPCRアッセイなど設計されるべきである。 図4C は、モザイクG0 個体を示すPCR-アッセイの一例を示し、期待されるwt産物に追加のPCR産物を示し、変異型アレーレを表す。

成人が出現すると、G0 注入胚から発達するG0 メスは、wt雄と交配し、卵を産むことができ、後で遺伝子型化される。選択したジェノタイピング方法からの変異の証拠を示すG0 フライを含むチューブのみが保持される。次の世代(G1 メス)からのハエは、wt男性と、または兄弟間で個別に交配される(G2から)。これらの十字架は卵を産み、選択の方法によって遺伝子型化することが許される。最後のステップは、ホモ接合変異体雄と雌が得られるまで繰り返され、ホモ接合変異株を確立する。変異線を確立するための適切な交点の連続の概略図を 図5Aに示します。 図5B は、同種変異体兄弟交差の同定を可能にする遺伝子型化PCRの一例を示す。

Figure 1
図1:マイクロインジェクション針。A. 良い針。注射に適さない極端なテーパーとの針。 この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図2:胚の採取とマイクロマニピュレーションの概要(この図は4から適応していた)。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 3
図3:マイクロインジェクションのセットアップ。A. マイクロインジェクションセットアップの概略図。B. マイクロインジェクション用の整列胚のクローズアップ。 この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 4
図4:モザイクG0 成人の飼育と同定。A. 胚マイクロインジェクションからG0 成人期までの予定時間スケジュール。B. 注射後の良い胚と悪い見た目の胚の例。C. 1つの形質転換G0 モザイク個体のPCR遺伝子型化。 この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 5
図5:対象の突然変異の同定と分離A. 変異対立胞を分離し、ホモ接合変異株を確立するための実験戦略の模式的表現( 図4)色は、変異型対立胞を担う細胞の存在を表し、ヘテロ接合(ピンク)またはホモ接合(赤)状態である。B. 砂ハエの個々のシブリングクロスをジェノタイピングするためのPCRスクリーニング戦略の例。 この図の大きなバージョンを表示するには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ここでは、フレボトムスパパタシサンドハエでCRISPR/Cas9による標的性変異誘発のための最近開発された胚微小注射法を紹介する。昆虫遺伝子改変のための胚微小注射は、1980年代半ばにショウジョウバエで開発され、現在では多種多様な昆虫に日常的に使用されています。遺伝子組み換え物質の送達のための他の方法は、例えばReMOT20、21、22、23およびエレクトロポレーション23のような昆虫で使用するために開発されている。しかし、胚微小注入は現在、これらの材料の送達のための最も汎用性が高く、効率的な方法である。ReMOTは、送達方法として非常に有望であり、胚微小注射と比較して成人注射の相対的な容易さのために、砂ハエでの使用のために検討されるべきである。しかし、これまでのところ、ReMotはCRISPR/Cas9 HDRまたはトランスポゾントランスジェネシスにうまく使用されていません。昆虫の胚微小注射の技術は基本的に最初に開発されたのと同じですが、それぞれの新種の技術の改良が必要な場合があります。これらの種の違いには、胚の発生のパターンと持続時間、胚構造、および胚が正常に発症する環境が含まれる。サンドフライ胚は特に小さい(長さ0.3~0.5mm、幅0.1~0.15mm、ショウジョウバエ卵1の大きさの約1/3を表す)。この小さいサイズは、それらを損傷することなく、卵を扱うの難しさを増加させます。砂飛ぶ胚は乾燥に特に敏感であるので、プロトコルの各ステップの水分レベルは非常に注意深く監視されなければならない。しかし、彼らは水生ではなく、長期間水に完全に沈んだ場合に死ぬでしょう。ショウジョウバエ胚微小注射は、胚の後端での注射を必要とする。砂飛び胚の対称的な形状に近いため、胚の極性を決定することは困難である。最後に、サンドフライ胚の発達はショウジョウバエと同様に進行しますが、はるかに遅い速度で進行します。胚発生だけでも、砂のハエ種に応じて6〜11日続きますが、ショウジョウバエの卵は産卵後1日しか孵化しません。ショウジョウバエの卵細胞化は、卵位後約2時間に起こるが、サンドフライ胚は、近位9時間の卵位でこの段階に達する。この発達タイミングの違いを考えると、注射は、シンジチアル胚の核の発達が発達初期の発達期の胚の中心付近に位置し、胚の極性を区別する必要性を排除することを前提に、発達中の砂飛ぶ胚の中心を標的としている。

CRISPR/Cas9は、選択したゲノム軌跡でdsDNAブレークを作成します。これらの二本鎖破断は、NHEJまたはHDRのいずれかによって細胞内で修復されます。我々がここで提示する方法は、以前はNHEJベースの突然変異誘発にのみ使用され、小さな挿入/欠失事象を生成し、インデルが、遺伝子配列のフレームシフトをもたらし、早期停止コドンおよびすべての機能的ドメイン4を欠くタンパク質をもたらした。昆虫はまた、HDRを介してdsDNA破断修復のための細胞機械を所有しており、より複雑なゲノム編集戦略を設計するために再ルーティングすることができます。HDRベースのCRISPR/Cas9ゲノム編集は、砂のハエに使用するためにまだ設定する必要があり、他の構造の中でも、発現および条件発現変異体の記者の開発を可能にする必要があります。

このマイクロインジェクションプロトコルの開発は、CRISPR/Cas9 HDR、トランスポゾントランスジェネシス、UAS/Gal4などのバイナリ発現系、およびphiC31またはCre/loxによる部位特異的組換えなどの他のゲノム修飾方法を使用するための扉を開くようになりました。これらの他の方法の開発は、より複雑なゲノム操作を可能にすることによって、サンドフライ遺伝子発現修飾のためのツールボックスをさらに拡大する。しかし、これらの他の方法を採用する前に、砂ハエに挿入された遺伝子の発現を促進するための調節因子を同定および単離する作業と、トランスポザースおよび組換え遺伝子の発現を促進するプロモーターなどの挿入およびこれらの方法の他の成分のマーカーが必要になる。

最後に、非モデル昆虫におけるゲノム編集は、CRISPR/Cas9発見と適応15,16の革命のおかげで、今では可能性が高くなっている。昆虫において、ほとんどのゲノム編集技術は、新たに開発されたReMOT技術の顕著な例外に、胚マイクロインジェクションを必要とし、重要かつ技術的に要求されるステップの両方を必要とする。この論文が、砂ハエに適応した遺伝子発現修飾技術の範囲を拡大し、その生物学に関する新たな発見とリーシュマニア寄生虫へのベクター能力につながることを期待する。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

何一つ

Acknowledgments

著者らは、ヴァネッサ・メルデナー=ハレルが原稿を批判的に読んでくれて感謝している。

Materials

Name Company Catalog Number Comments
Black Filter Paper 4.25CM PK100 VWR 28342-012 Cut into rectangles that are approximately 46 X 22mm. These are placed between the slide and the coverslip and act as a moist base layer for the embryos during injection.
Coverslips Fisher Scientific 12-543A
Dissecting Microscope Any brand For aligning embryos
Glass slides Fisher Scientific 12-550-A3 Base layer of the microinjection set up Figure 2A
Insect cage custom made or several commercial options polycarbonate cage for adults holding and mating Lawyer, Phillip, Mireille Killick-Kendrick, Tobin Rowland, Edgar Rowton, and Petr Volf. “Laboratory Colonization and Mass Rearing of Phlebotomine Sand Flies (Diptera, Psychodidae).” Parasite 24. Accessed August 6, 2020. https://doi.org/10.1051/parasite/2017041.
Larval food custom made a mix of rabbit chow and rabbit feces Lawyer, Phillip, Mireille Killick-Kendrick, Tobin Rowland, Edgar Rowton, and Petr Volf. “Laboratory Colonization and Mass Rearing of Phlebotomine Sand Flies (Diptera, Psychodidae).” Parasite 24. https://doi.org/10.1051/parasite/2017041.
Microcaps 100 ml Drummond 1-000-1000 Used to back fill microinjection needles
Mouth aspirator John W. Hock Company Model 612 mouth aspirator with HEPA filter
Olympus SZX12 Olympus Life Sciences Microinjection microscope
Ovipots Nalge company ovipots are made from 125-ml or 500-ml straigh-sided plolypropylene jars modified by drilling 2.5cm holes in the bottom and filled with 1cm of plaster of Paris. Lawyer, Phillip, Mireille Killick-Kendrick, Tobin Rowland, Edgar Rowton, and Petr Volf. “Laboratory Colonization and Mass Rearing of Phlebotomine Sand Flies (Diptera, Psychodidae).” Parasite 24. Accessed August 6, 2020. https://doi.org/10.1051/parasite/2017041.
Paint Brush 6-0 Any Art Supply Company n/a Used for aligning embryos
Propionic acid Sigma-Aldrich 402907 antifungal agent
Standard Glass Capillaries World Precision Instruments 1B100-3 Used for making microinjection needles
Trio-MPC100 Controller and MP845 Manipulator Sutter Instruments Microinjection Controller and Micromanipulator

DOWNLOAD MATERIALS LIST

References

  1. Lawyer, P., Killick-Kendrick, M., Rowland, T., Rowton, E., Volf, P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite. 24, 42 (2017).
  2. Pelletier, I., et al. Specific recognition of Leishmania major poly-beta-galactosyl epitopes by galectin-9: possible implication of galectin-9 in interaction between L. major and host cells. Journal Biological Chemistry. 278 (25), 22223-22230 (2003).
  3. Kamhawi, S., et al. A role for insect galectins in parasite survival. Cell. 119 (3), 329-341 (2004).
  4. Louradour, I., Ghosh, K., Inbar, E., Sacks, D. L. CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio. 10 (4), (2019).
  5. Xi, Z., Ramirez, J. L., Dimopoulos, G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathogens. 4 (7), 1000098 (2008).
  6. Ramirez, J. L., Dimopoulos, G. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Development and Comparative Immunology. 34 (6), 625-629 (2010).
  7. Ramirez, J. L., et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Neglected Tropical Diseases. 6 (3), 1561 (2012).
  8. Hu, C., Aksoy, S. Innate immune responses regulate trypanosome parasite infection of the tsetse fly Glossina morsitans morsitans. Molecular Microbiology. 60 (5), 1194-1204 (2006).
  9. Meister, S., et al. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathogens. 5 (8), 1000542 (2009).
  10. Meister, S., et al. Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences U S A. 102 (32), 11420-11425 (2005).
  11. Telleria, E. L., et al. Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. Journal of Biological Chemistry. 287 (16), 12985-12993 (2012).
  12. Sant'Anna, M. R., Alexander, B., Bates, P. A., Dillon, R. J. Gene silencing in phlebotomine sand flies: Xanthine dehydrogenase knock down by dsRNA microinjections. Insect Biochemistry and Molecular Biology. 38 (6), 652-660 (2008).
  13. Sant'anna, M. R., Diaz-Albiter, H., Mubaraki, M., Dillon, R. J., Bates, P. A. Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania. Parasites and Vectors. 2 (1), 62 (2009).
  14. Diaz-Albiter, H., Mitford, R., Genta, F. A., Sant'Anna, M. R., Dillon, R. J. Reactive oxygen species scavenging by catalase is important for female Lutzomyia longipalpis fecundity and mortality. PLoS One. 6 (3), 17486 (2011).
  15. Barrangou, R., et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315 (5819), 1709-1712 (2007).
  16. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337 (6096), 816-821 (2012).
  17. Pawelczak, K. S., Gavande, N. S., VanderVere-Carozza, P. S., Turchi, J. J. Modulating DNA Repair Pathways to Improve Precision Genome Engineering. ACS Chemical Biology. 13 (2), 389-396 (2018).
  18. Martin-Martin, I., Aryan, A., Meneses, C., Adelman, Z. N., Calvo, E. Optimization of sand fly embryo microinjection for gene editing by CRISPR/Cas9. PLoS Neglected Tropical Diseases. 12 (9), 0006769 (2018).
  19. Meuti, M., Harrell, R. Preparing and Injecting Embryos of Culex Mosquitoes to Generate Null Mutations Using CRISPR/Cas9. JoVE. (163), e61651 (2020).
  20. Chaverra-Rodriguez, D., et al. Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nature Communications. 9 (1), 3008 (2018).
  21. Chaverra-Rodriguez, D., et al. Germline mutagenesis of Nasonia vitripennis through ovarian delivery of CRISPR-Cas9 ribonucleoprotein. Insect Molecular Biology. , (2020).
  22. Heu, C. C., McCullough, F. M., Luan, J., Rasgon, J. L. CRISPR-Cas9-Based Genome Editing in the Silverleaf Whitefly (Bemisia tabaci). CRISPR Journal. 3 (2), 89-96 (2020).
  23. Macias, V. M., et al. Cas9-Mediated Gene-Editing in the Malaria Mosquito Anopheles stephensi by ReMOT Control. Genes, Genomes and Genetics (Bethesda). 10 (4), 1353-1360 (2020).

Tags

今月のJoVE、問題165、昆虫、ゲノム編集、胚注射
CRISPR/Cas9突然変異誘発のためのサンドフライ(フレボトムスパパタシ)胚微小注射
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Louradour, I., Ghosh, K., Inbar, E., More

Louradour, I., Ghosh, K., Inbar, E., Sacks, D. L., Aluvihare, C., Harrell II, R. A. Sand Fly (Phlebotomus papatasi) Embryo Microinjection for CRISPR/Cas9 Mutagenesis. J. Vis. Exp. (165), e61924, doi:10.3791/61924 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter