Summary

Деполимеризуемые олефиновые полимеры на основе плавленых кольцевых циклооктеновых мономеров

Published: December 16, 2022
doi:

Summary

Здесь описаны протоколы получения трансциклобутановых плавленых циклооктенов (tCBCO), их полимеризации для получения деполимеризуемых олефиновых полимеров и деполимеризации этих полимеров в мягких условиях. Дополнительно описаны протоколы подготовки деполимеризуемых сетей и компрессионного формования жестких линейных пластмасс на основе этой системы.

Abstract

Растущее потребление синтетических полимеров и накопление полимерных отходов привели к острой потребности в новых путях к устойчивым материалам. Достижение экономики полимеров с замкнутым циклом путем химической переработки в мономер (CRM) является одним из таких многообещающих путей. Наша группа недавно сообщила о новой CRM-системе на основе полимеров, полученных путем метатезисной полимеризации с открытием кольца (ROMP) трансциклобутанских плавленых циклооктеновых (tCBCO) мономеров. Эта система предлагает несколько ключевых преимуществ, включая простоту полимеризации при температуре окружающей среды, количественную деполимеризацию в мономеры в мягких условиях, а также широкий спектр функциональных возможностей и термомеханических свойств. Здесь мы излагаем подробные протоколы получения мономеров на основе tCBCO и соответствующих им полимеров, включая подготовку упругих полимерных сетей и компрессионное формование линейных термопластичных полимеров. Мы также описываем получение высококольцевой деформации мономеров E-alkene tCBCO и их живую полимеризацию. Наконец, также демонстрируются процедуры деполимеризации линейных полимеров и полимерных сетей.

Introduction

Универсальная и прочная природа синтетических полимеров сделала их вездесущим атрибутом современного человеческого существования. С другой стороны, те же прочные и экологически стойкие свойства делают полимерные отходы чрезвычайно стойкими. Это, наряду с тем фактом, что большая часть всех когда-либо произведенных синтетических полимеров оказалась на свалках1, вызвало законную обеспокоенность по поводу их воздействия на окружающую среду2. Кроме того, открытый характер традиционной полимерной экономики вызвал устойчивое потребление нефтехимических ресурсов и растущий углеродный след3. Таким образом, перспективные пути к экономике полимеров с замкнутым контуром пользуются большим спросом.

Химическая переработка в мономер (CRM) является одним из таких путей. Преимущество CRM перед традиционной переработкой заключается в том, что она приводит к регенерации мономеров, которые могут быть использованы для производства нетронутых полимеров, в отличие от механической переработки материалов с ухудшающимися свойствами в течение нескольких циклов обработки. Полимеры на основе кольцевых полимеризаций оказались особенно привлекательными путями к материалам CRM4. Термодинамика полимеризации обычно представляет собой взаимодействие между двумя противоположными факторами: энтальпией полимеризации (ΔH p, которая обычно отрицательна и благоприятствует полимеризации) и энтропией полимеризации (ΔSp, которая также обычно отрицательна, но не благоприятствует полимеризации), причем потолочная температура (Tc) является температурой, при которой эти два фактора уравновешивают друг друга5 . Чтобы полимер был способен к CRM в практических и экономически выгодных условиях, должен быть достигнут правильный баланс ΔHp и ΔSp. Циклические мономеры позволяют удобным способом настроить эти факторы путем подбора соответствующего размера кольца и геометрии, так как здесь ΔHp в первую очередь определяется кольцевой деформацией циклических мономеров 4,5. В результате, полимеры CRM с широким спектром мономеров были зарегистрированы в последнее время 6,7,8,9,10,11. Из этих систем полимеры ROMP, полученные из циклопентенов, особенно перспективны из-за довольно дешевого исходного материала, а также гидролитической и термической стабильности полимеров. Кроме того, в отсутствие катализатора метатеза деполимеризация кинетически неосуществима, обеспечивая высокую термическую стабильность, несмотря на низкий Tc12. Однако циклопентены (и другие мономеры, основанные на небольших циклических структурах) представляют собой ключевую проблему – они не могут быть легко функционализированы, поскольку наличие функциональных групп на позвоночнике может влиять на термодинамику полимеризации радикальными, а иногда и непредсказуемыми способами13,14.

Недавно мы сообщали о системе, которая преодолевает некоторые из этих проблем15. Вдохновленная примерами низкострессовых плавленых кольцевых циклооктенов в литературе16,17, была разработана новая CRM-система на основе ROMP-полимеров трансциклобутаны плавленых циклооктенов (tCBCO) (рисунок 1A). Мономеры tCBCO могут быть получены в масштабе грамма из [2+2] фотоциклоаддукта малеинового ангидрида и 1,5-циклооктадиена, которые могут быть легко функционализированы для достижения разнообразного набора заместителей (рисунок 1B). Полученные мономеры имели кольцевые деформации, сопоставимые с циклопентеном (~5 ккал·моль−1, рассчитанные с использованием DFT). Термодинамические исследования выявили низкий ΔHp (−1,7 ккал·моль−1 до −2,8 ккал·моль−1), который был компенсирован низким ΔSp (−3,6 ккал·моль−1· К−1 до −4,9 ккал·моль−1· K−1), позволяющий получать высокомолекулярные полимеры (при высоких концентрациях мономеров) и близкую к количественной деполимеризации (>90%, в разбавленных условиях) при температурах окружающей среды в присутствии катализатора Граббса II (G2). Также было продемонстрировано, что материалы с различными термомеханическими свойствами могут быть получены при сохранении легкости полимеризации/деполимеризации. Эта способность была дополнительно использована для получения мягкой эластомерной сети (которая также может быть легко деполимеризирована), а также жесткого термопласта (с растягивающими свойствами, сопоставимыми с полистиролом).

Одним из недостатков этой системы была необходимость высоких концентраций мономеров для доступа к полимерам с высокой молекулярной массой. В то же время из-за обширных реакций переноса цепи и циклизации полимеризация носила неконтролируемый характер. Это было рассмотрено в последующей работе путем фотохимической изомеризации Z-алкена в мономерах tCBCO для получения высокодеформированных мономеров E-алкена tCBCO18. Эти мономеры могут быть быстро полимеризованы живым способом при низких начальных концентрациях мономеров (≥25 мМ) в присутствии катализатора Граббса I (G1) и избытка трифенилфосфина (PPh3). Затем полимеры могут быть деполимеризованы с получением Z-алкеновой формы мономеров. Это создало возможности для доступа к новым деполимеризуемым полимерным архитектурам, включая блок-сополимеры и сополимеры трансплантата/ бутылочной щетки.

В данной работе намечены подробные протоколы синтеза мономеров tCBCO с различными функциональными группами и их полимеризации, а также деполимеризации полученных полимеров. Дополнительно описаны протоколы получения образцов собачьей кости мягкой эластомерной сети и их деполимеризации, а также компрессионного формования замещенного N-фенилимидом жесткого термопластичного полимера. Наконец, также обсуждаются протоколы фотоизомеризации мономера tCBCO до его штаммированной формы E-alkene tCBCO и его последующего живого ROMP.

Protocol

ПРИМЕЧАНИЕ: Протоколы, изложенные ниже, представляют собой подробные формы экспериментальных процедур, о которых сообщалось ранее 15,18,19. Характеристика малых молекул и полимеров была зарегистрирована ранее15,18<sup class=…

Representative Results

Здесь обсуждаются репрезентативные результаты, ранее опубликованные 15,18,19. На фиг.5 показаны следы GPC для полимера P1, полученного обычным ROMP с G2 (красная кривая)15 и живым ROMP E<str…

Discussion

Мономеры tCBCO могут быть получены из общего предшественника: [2+2] фотоциклоаддукта малеинового ангидрида и 1,5-циклооктадиена, ангидрида 1. Поскольку сырой ангидрид 1 трудно очищается, но может быть легко гидролизуем, сырую фотореакционную смесь подвергают условиям …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Мы подтверждаем финансовую поддержку со стороны Университета Акрона и Национального научного фонда в рамках гранта DMR-2042494.

Materials

1 and 3 dram vials VWR 66011-041, 66011-100
1,4-butanediol Sigma-Aldrich 240559-100G
1,5-cyclooctadiene ACROS AC297120010
1-butanol Fisher A399-1
20 mL scintillation vials VWR 66022-081
Acetic Anhydride Alfa-Aesar AAL042950B
Acetone Fisher A18-20
Aluminum backed TLC plates Silicycle TLA-R10011B-323
Ammonium hydroxide Fisher A669-212
Aniline TCI A0463500G
BD precisionglide (18 G) Fisher
Chloroform Fisher C298-4
Column for circulation (to be packed with silver nitrate treated silica gel) Approximately 1 cm radius and 25 cm long, with inner thread on either end
d-Chloroform Cambridge Isotopes DLM-7-100
Dichloromethane VWR BDH1113-19L
EDC.HCl; 3-(3-dimethylaminopropyl)-1-ethyl-carbodiimide hydrochloride Chemimpex 00050
Ethyl Acetate Fisher E145-20
Ethyl Vinyl Ether Sigma-Aldrich 422177-250ML
Glass chromatography columns Fabricated in-house D = 20 mm, L= 450 mm and D = 40 mm, L = 450 mm The columns are fitted with a teflon stopcock at one end and a 24/40 ground glass joint to accommodate a solvent reservoir if needed.
Grubbs Catalyst 1st Generation (M102) Sigma-Aldrich 579726-1G
Grubbs Catalyst 2nd Generation (M204) Sigma-Aldrich 569747-100MG
Hexanes Fisher H292-20
Hydraulic press Carver Instruments #3912 Coupled with temperature control modules (see below)
Hydrochloric acid Fisher AA87617K4
Maleic Anhydride ACROS AC125240010
Methanol Fisher A412-20
Micro essential Hydrion pH paper (1-13 pH) Fisher 14-850-120
Normject Luer Lock syringes (1, 3 and 10 mL) VWR 89174-491, 53547-014 and 53547-010
Photoreactor chamber Rayonet RPR-100
QuadraPure TU (catalyst scavenger) Sigma-Aldrich 655422-5G
Quartz tubes Favricated in-house D=2", L=12.5" and D=1.5", L=10.5"
Rotavap Buchi
SciLog Accu Digital Metering Pump MP- 40 Parker 500 mL capacity
Siliaflash Irregular Silica, F60 Silicycle R10030B-25KG
Silver Nitrate ACROS AC197680050
Sodium hydroxide VWR BDH9292-2.5KG
Steel Mold Fabricated in-house Overall dimensions of mold cavity: length 20 mm, width 7 mm and depth 1 mm; gauge dimensions: length 10 mm, width 3 mm)
Steel Plates Fabricated in-house 100 mm x 150 mm x 1 mm
Teflon Mold (6-cavities) Fabricated in-house Overall cavity dimensions: length 25 mm, width 8.35 mm and depth 0.8 mm; gauge dimensions: length 5 mm, width 2 mm)
Teflon Sheets (0.005" thick) McMaster-Carr 8569K61
Temperature Control Modules Omega C9000A and C9000 °C units (two modules, one for top and one for bottom)
Triphenyl Phosphine TCI T0519500G
UV lamps Rayonet RPR2537A and RPR3000A
Vacuum pump Welch Duoseal
Whatman Filter Paper (grade 2) VWR 09-810F filter paper

References

  1. Geyer, R., Jambeck, J. R., Law, K. L. Production, use, and fate of all plastics ever made. Science Advances. 3 (7), 1700782 (2017).
  2. Barnes, D. K. A., Galgani, F., Thompson, R. C., Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences. 364 (1526), 1985-1998 (2009).
  3. Zheng, J., Suh, S. Strategies to reduce the global carbon footprint of plastics. Nature Climate Change. 9 (5), 374-378 (2019).
  4. Coates, G. W., Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials. 5 (7), 501-516 (2020).
  5. Odian, G. Ring-opening Polymerization. Principles of Polymerization. , 544-618 (2004).
  6. Zhu, J. B., Watson, E. M., Tang, J., Chen, E. Y. X. A synthetic polymer system with repeatable chemical recyclability. Science. 360 (6387), 398-403 (2018).
  7. Xiong, W., et al. Geminal dimethyl substitution enables controlled polymerization of penicillamine-derived β-thiolactones and reversed depolymerization. Chem. 6 (7), 1831-1843 (2020).
  8. Abel, B. A., Snyder, R. L., Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science. 373 (6556), 783-789 (2021).
  9. Neary, W. J., Isais, T. A., Kennemur, J. G. Depolymerization of bottlebrush polypentenamers and their macromolecular metamorphosis. Journal of the American Chemical Society. 141 (36), 14220-14229 (2019).
  10. Feist, J. D., Xia, Y. Enol ethers are effective monomers for ring-opening metathesis polymerization: Synthesis of degradable and depolymerizable poly(2,3-dihydrofuran). Journal of the American Chemical Society. 142 (3), 1186-1189 (2020).
  11. Hong, M., Chen, E. Y. X. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nature Chemistry. 8 (1), 42-49 (2016).
  12. Shi, C., et al. Design principles for intrinsically circular polymers with tunable properties. Chem. 7 (11), 2896-2912 (2021).
  13. Neary, W. J., Kennemur, J. G. Polypentenamer renaissance: Challenges and opportunities. ACS Macro Letters. 8 (1), 46-56 (2019).
  14. Olsén, P., Odelius, K., Albertsson, A. -. C. Thermodynamic presynthetic considerations for ring-opening polymerization. Biomacromolecules. 17 (3), 699-709 (2016).
  15. Sathe, D., et al. Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nature Chemistry. 13 (8), 743-750 (2021).
  16. Scherman, O. A., Walker, R., Grubbs, R. H. Synthesis and characterization of stereoregular ethylene-vinyl alcohol copolymers made by ring-opening metathesis polymerization. Macromolecules. 38 (22), 9009-9014 (2005).
  17. You, W., Hugar, K. M., Coates, G. W. Synthesis of alkaline anion exchange membranes with chemically stable imidazolium cations: Unexpected cross-linked macrocycles from ring-fused ROMP monomers. Macromolecules. 51 (8), 3212-3218 (2018).
  18. Chen, H., Shi, Z., Hsu, T. G., Wang, J. Overcoming the low driving force in forming depolymerizable polymers through monomer isomerization. Angewandte Chemie International Edition. 60 (48), 25493-25498 (2021).
  19. Sathe, D., Chen, H., Wang, J. Regulating the thermodynamics and thermal properties of depolymerizable polycyclooctenes through substituent effects. Macromolecular Rapid Communications. , (2022).
  20. Vogel, A. I., Furniss, B. S. . Vogel’s Textbook of Practical Organic Chemistry. , (2003).
  21. Pirrung, M. C. Following the Reaction. The Synthetic Organic Chemist’s Companion. , 93-105 (2007).
  22. Royzen, M., Yap, G. P. A., Fox, J. M. A Photochemical synthesis of functionalized trans-cyclooctenes driven by metal complexation. Journal of the American Chemical Society. 130 (12), 3760-3761 (2008).
  23. Chiang, Y., Kresge, A. J. Mechanism of hydration of simple olefins in aqueous solution. cis- and trans-Cyclooctene. Journal of the American Chemical Society. 107 (22), 6363-6367 (1985).
  24. Fang, Y., et al. Studies on the stability and stabilization of trans-cyclooctenes through radical inhibition and silver (I) metal complexation. Tetrahedron. 75 (32), 4307-4317 (2019).

Play Video

Cite This Article
Sathe, D., Zhou, J., Chen, H., Wang, J. Depolymerizable Olefinic Polymers Based on Fused-Ring Cyclooctene Monomers. J. Vis. Exp. (190), e64182, doi:10.3791/64182 (2022).

View Video