Summary

זרימת עבודה המבוסס על השילוב של מעקב איזוטרופי ניסויים כדי לחקור את חילוף החומרים מיקרוביאלית של מקורות מזון רבים

Published: January 22, 2018
doi:

Summary

פרוטוקול זה מתאר תהליך ניסוי לחקור באופן כמותי ומקיף על חילוף החומרים של מקורות מזון רבים. זרימת עבודה זו, המבוססת על שילוב של ניסויים מעקב איזוטרופי שגרת אנליטית, מאפשר את גורלו של חומרים מזינים נצרך המקור מטבולית של מולקולות synthetized על-ידי מיקרואורגניזמים נקבע.

Abstract

מחקרים בתחום המיקרוביולוגיה להסתמך על ביצוע מגוון רחב של מתודולוגיות. בפרט, פיתוח שיטות המתאימות תורמת באופן משמעותי במתן ידע נרחב על חילוף החומרים של המיקרואורגניזמים הגדלים בתקשורת כימית מוגדרים המכילים חנקן ייחודי ומקורות פחמן. לעומת זאת, הניהול באמצעות חילוף החומרים ממספר מקורות מזון, למרות נוכחותם רחבה בסביבה טבעית או תעשייתית, נשאר כמעט שאינו גלוי. המצב הזה הוא בעיקר בגלל חוסר של מתודולוגיות מתאימים, שפוגעת חקירות.

אנחנו מדווחים על אסטרטגיית ניסיוני לחקור באופן כמותי ומקיף איך חילוף החומרים פועל כאשר התזונתי מסופק הוא תערובת של מולקולות שונות, קרי, משאב מורכבים. כאן, אנו מתארים את היישום שלה לשם הערכת חלוקת ממספר מקורות חנקן דרך הרשת מטבולית שמרים. זרימת העבודה משלב מידע שהתקבל במהלך איזוטופ יציב מעקב ניסויים באמצעות שנבחרו 13C – או 15התווית על-ידי N סובסטרטים. תחילה מורכבת fermentations מקבילים, לשחזור במדיום אותו, הכולל תערובת של מולקולות המכילות N; עם זאת, מקור חנקן שנבחר מסומן בכל פעם. שילוב של תהליכים אנליטיים (HPLC, GC-MS) מיושמת כדי להעריך את הדפוסים תיוג של תרכובות יישוב וכדי לכמת את צריכת ושחזור של מצעים בשנת מטבוליטים אחרים. ניתוח משולב של ערכת הנתונים השלם מספק מבט על גורלם של סובסטרטים נצרך בתוך התאים. גישה זו דורשת פרוטוקול מדויק עבור האוסף של דוגמאות – הקל על-ידי מערכת בסיוע רובוט לניטור המקוון של fermentations – ואת ההישג של אינספור ניתוחים גוזלת זמן. למרות אילוצים אלה, זה מותר הבנה, בפעם הראשונה, חלוקת מקורות חנקן רבים ברחבי הרשת מטבולית שמרים. מבואר הפצה מחדש של חנקן ממקורות שופע יותר לכיוון N-תרכובות אחרות ואנו נחוש את המקורות מטבולית של מולקולות נדיפות וחומצות אמינו proteinogenic.

Introduction

ההבנה כיצד פועלת מטבוליזם מיקרוביאלי היא סוגיה מרכזית על עיצוב האתר של אסטרטגיות יעילות כדי לשפר תהליכי תסיסה, לווסת את הייצור של תרכובות fermentative. ההתקדמות גנומיקה, גנומיקה תפקודית בשני עשורים האחרונים אלו תרמו במידה רבה הרחבת הידע של הטופולוגיה של רשתות מטבוליות של מיקרואורגניזמים רבים. הגישה למידע זה הוביל לפיתוח גישות המטרה עבור סקירה מקיפה של תפקוד התאים1. מתודולוגיות אלה לעיתים קרובות לסמוך על פרשנות המבוססת על מודל של פרמטרים מדידים. נתונים ניסיוני אלה כוללים, מצד אחד, ספיגת מטבוליט וקצבי ייצור ו, מצד שני, ניסויים כמותיים תאיים המתקבל איזוטופ מעקב. נתונים אלה מספקים מידע חיוני עבור ניכוי של הפעילות ויוו של מסלולים שונים הרשת המוגדרות מטבוליים2,3,4. כיום, טכניקות אנליטיות זמין רק לאפשר את איתור מדויק של תיוג דפוסים של מולקולות בעת שימוש איזוטופ רכיב אחד ואולי גם כאשר תיוג במשותף עם שני אלמנטים איזוטרופי. יתר על כן, תחת רוב תנאי הגידול, מקור פחמן מורכבת רק אחד או שניים-תרכובות. כתוצאה מכך, גישות המבוסס על 13C-איזוטרופי קליעים נותבים של פחמן סובסטרטים נרחב ובהצלחה הוחלו לפתח הבנה מלאה של פחמן רשת מטבולית פעולות5,6,7 ,8.

לעומת זאת, רבים בסביבות טבעיים ותעשייתיים, המשאב חנקן זמין התומך צמיחת חיידקים מורכב לעיתים קרובות של מגוון רחב של מולקולות. לדוגמה, במהלך התסיסה יין או בירה, חנקן מסופק הוא תערובת של 18 חומצות אמינו, אמוניום ריכוזים משתנים9. זה מגוון של תרכובות N הנגישים עבור אנאבוליזם הופך תנאים אלה מדיה מורכבת מאוד שונים מאלה הנפוץ עבור מחקרים פיזיולוגיים, כמו האחרון מושגות באמצעות מקור ייחודי של חנקן, בדרך כלל אמוניום.

בסך הכל, הפנימו עשוי להיות שולבו חלבונים או catabolized ישירות תרכובות חנקן. מבנה הרשת של חילוף החומרים חנקן מיקרואורגניזמים רבים, כולל את השמרים האפייה, מורכב מאוד בהתאם המגוון של סובסטרטים. סכמטי, מערכת זו מבוססת על השילוב של הליבה המרכזית של חילוף החומרים של חנקן אשר מזרז את interconversion של גלוטמין, גלוטמט וα-ketoglutarate10,11, עם הטרנסאמינאז ורמת deaminases. דרך רשת זו, אמין קבוצות אמוניום או חומצות אמיניות אחרות נאספים ושוחררה חומצות α-קטו. Intermediates אלה הם גם synthetized עד12,פחמן מרכזי חילוף החומרים (CCM)13. זה מספר רב של תגובות מסועף, intermediates, מעורב קטבוליזם של מקורות חנקן אקסוגני והן את אנאבוליזם proteinogenic חומצות אמינו, ממלא את הדרישות anabolic של התאים. הפעילות דרך המסלולים מחוברים שונים תוצאות גם הפרשה של מטבוליטים. בפרט, חומצות α-קטו ייתכן שתנותב דרך ארליך בשביל לייצר כהלים גבוה יותר, שלהם אצטט אסתר נגזרים14, אשר חיוני כתורמים הפרופילים חושית של מוצרים. לאחר מכן, איך פועל חנקן מטבוליזם תפקיד המפתח לייצור ביומסה, היווצרות של מולקולות נדיפות (ארומה).

תגובות, אנזימים, גנים המעורבים בחילוף החומרים חנקן מתוארים בהרחבה בספרות. עם זאת, סוגיית חלוקת מקורות חנקן רבים ברחבי רשת מטבולית לא כבר טופלה. ישנן שתי סיבות עיקריות להסביר חוסר מידע. ראשית, על רקע המורכבות חשוב של הרשת חילוף החומרים חנקן, כמות גדולה של נתונים כמותיים נדרשת עבור הבנה מלאה של הפעולה שלו, זה לא היה זמין עד עכשיו. שנית, רבים ניסיוני אילוצים ומגבלות של שיטות אנליטיות מנעו את יישום גישות ששימשו בעבר הבהרה של הפונקציה CCM.

כדי להתגבר על בעיות אלה, בחרנו לפתח גישה ברמת המערכת המבוסס על הפיוס של נתונים מתוך סדרה של ניסויים איזוטרופי מעקב. זרימת העבודה כוללת:
-קבוצת fermentations מתבצעת תחת באותם תנאים סביבתיים, בעוד מקור מזין שנבחר שונה (סובסטרט) נקראת בכל פעם.
-שילוב של תהליכים אנליטיים (HPLC, GC-MS) לקביעת מדויק, בשלבים שונים של התסיסה, של ריכוז המצע שכותרתו וריכוז שיורית והעשרה איזוטרופי של תרכובות הנגזרים קטבוליזם של מולקולת שכותרתו, כולל ביומסה נגזר.
-חישוב של האיזון מסה ו איזוטרופי לכל נצרך מולקולה שכותרתו, ניתוח משולב נוסף של ערכת הנתונים כדי לקבל סקירה הכללית של ההנהלה של מקורות מזון רבים על-ידי מיקרואורגניזמים באמצעות הקביעה של יחסי גודל השטף .

כדי להחיל מתודולוגיה זו, ישולם תשומת לב להתנהגות לשחזור של הזן/בקטריה בין תרבויות. יתר על כן, יש לקחת דגימות מתרבויות שונות במהלך התקדמות התסיסה מוגדרים היטב אותו. עבודה ניסיונית דיווח בכתב היד, מערכת בסיוע רובוט משמש לניטור המקוון של fermentations להביא בחשבון אילוצים אלה.

יתר על כן, זה חיוני לבחור סט מצעים עם תוויות (מתחם טבע, המיקום של תיוג) המתאים לדון בבעיית המדעי של המחקר. . הנה, 15התווית על-ידי N אמוניום, גלוטמין וארגינין נבחרו שלושה מקורות חנקן העיקריים שנמצאו מיץ ענבים. פעולה זו מותרת הערכת הדפוס של חנקן הפצה מחדש של תרכובות נצרך כדי חומצות האמינו את proteinogenic. אנחנו נועד גם כדי לחקור את גורלו של עמוד השדרה פחמן של חומצות האמינו נצרך את ותרומתם הייצור של מולקולות נדיפות. לפגוש את המטרה, בצורה אחידה 13התווית על-ידי C לאוצין, איזולאוצין, תראונין, ולין נכללו במחקר כמו חומצות אמינו הנגזרים intermediates העיקריים של הנתיב ארליך.

בסך הכל, באופן כמותי חרשנו שבו שמרים מנהל משאב חנקן מורכבים, בעזרת חנקן אקסוגני מקורות כדי למלא את הדרישות anabolic שלה במהלך התסיסה בעת הסרת בנוסף עודף של פחמן מבשרי כמו מולקולות נדיפות. ניתן להחיל את הליך ניסיוני דיווח בעיתון הזה לחקור מקורות תזונתיים מרובים אחרים בשימוש על ידי כל מיקרואורגניזם אחר. זה נראה גישה המתאים לניתוח של ההשפעה של הרקע הגנטי או תנאי הסביבה על התנהגות מטבולית של מיקרואורגניזמים.

Protocol

1. תסיסה ודגימה הכנת fermenters ומדיההערה: כל fermentations מתבצעות בחוץ במקביל, תוך שימוש המתח אותו, באותו כימית מוגדר בינוני סינתטי (SM, קומפוזיציה הניתנים טבלה 1), אשר כוללת תערובת של אמוניה וחומצות אמינו כמו חנקן ממקורות15. עבור כל התסיסה, תרכובת חנקן אחד מסופק ב…

Representative Results

תרשים 3 מציג תרשים סכימטי של זרימת העבודה שיושמה כדי לחקור את הניהול על ידי שמרים של מקורות חנקן מרובות שנמצאו במהלך התסיסה היין.עבור נקודות שונות של הדגימה, המאפיינים ביולוגי פרמטרי – צמיחה, דפוסי צריכת החנקן לפרופיל של proteinogenic חומצות אמינו – הצג הפאר?…

Discussion

לכימות חלוקת תרכובות דרך רשתות מטבוליות באמצעות מעקב איזוטרופי הניסויים היא גישה מבטיחה להבנת פעולת חילוף החומרים מיקרוביאלי. מתודולוגיה זו, בעוד הוחלו בהצלחה עם מצעים עם תוויות אחד או שניים, כעת אפשרות ליישם ללמוד מטבוליזם של מקורות שונים באמצעות מספר איזוטופים אלמנטלים שכותרתו (קרי<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

אנו מודים ז’אן רוש מורה, סילבי Dequin ו ז’אן-מארי Sabalyrolles לתרום התפיסה של מערכת רובוטית בסיוע תסיסה, מרטין Pradal, ניקולא בובייה, פסקל Brial לתמיכה טכנית שלהם. מימון עבור פרוייקט זה סופק על ידי Ministère de l’Education נאסיונאל, דה לה רשרש et de la Technologie.

Materials

D-Glucose PanReac 141341.0416
D-Fructose PanReac 142728.0416
DL-Malic acid Sigma Aldrich M0875
Citric acid monohydrate Sigma Aldrich C7129
Potassium phosphate monobasic Sigma Aldrich P5379
Potassium sulfate Sigma Aldrich P0772
Magnesium sulfate heptahydrate Sigma Aldrich 230391
Calcium chloride dihydrate Sigma Aldrich C7902
Sodium chloride Sigma Aldrich S9625
Ammonium chloride Sigma Aldrich A4514
Sodium hydroxide Sigma Aldrich 71690
Manganese sulfate monohydrate Sigma Aldrich M7634
Zinc sulfate heptahydrate Sigma Aldrich Z4750
Copper (II) sulfate pentahydrate Sigma Aldrich C7631
Potassium iodine Sigma Aldrich P4286
Cobalt (II) chloride hexahydrate Sigma Aldrich C3169
Boric acid Sigma Aldrich B7660
Ammonium heptamolybdate Sigma Aldrich A7302
Myo-inositol Sigma Aldrich I5125
D-Pantothenic acid hemicalcium salt Sigma Aldrich 21210
Thiamine, hydrochloride Sigma Aldrich T4625
Nicotinic acid Sigma Aldrich N4126
Pyridoxine Sigma Aldrich P5669
Biotine Sigma Aldrich B4501
Ergostérol Sigma Aldrich E6510
Tween 80 Sigma Aldrich P1754
Ethanol absolute VWR Chemicals 101074F
Iron (III) chloride hexahydrate Sigma Aldrich 236489
L-Aspartic acid Sigma Aldrich A9256
L-Glutamic acid Sigma Aldrich G1251
L-Alanine Sigma Aldrich A7627
L-Arginine Sigma Aldrich A5006
L-Cysteine Sigma Aldrich C7352
L-Glutamine Sigma Aldrich G3126
Glycine Sigma Aldrich G7126
L-Histidine Sigma Aldrich H8000
L-Isoleucine Sigma Aldrich I2752
L-Leucine Sigma Aldrich L8000
L-Lysine Sigma Aldrich L5501
L-Methionine Sigma Aldrich M9625
L-Phenylalanine Sigma Aldrich P2126
L-Proline Sigma Aldrich P0380
L-Serine Sigma Aldrich S4500
L-Threonine Sigma Aldrich T8625
L-Tryptophane Sigma Aldrich T0254
L-Tyrosine Sigma Aldrich T3754
L-Valine Sigma Aldrich V0500
13C5-L-Valine Eurisotop CLM-2249-H-0.25
13C6-L-Leucine Eurisotop CLM-2262-H-0.25
15N-Ammonium chloride Eurisotop NLM-467-1
ALPHA-15N-L-Glutamine Eurisotop NLM-1016-1
U-15N4-L-Arginine Eurisotop NLM-396-PK
Ethyl acetate Sigma Aldrich 270989
Ethyl propanoate Sigma Aldrich 112305
Ethyl 2-methylpropanoate Sigma Aldrich 246085
Ethyl butanoate Sigma Aldrich E15701
Ethyl 2-methylbutanoate Sigma Aldrich 306886
Ethyl 3-methylbutanoate Sigma Aldrich 8.08541.0250
Ethyl hexanoate Sigma Aldrich 148962
Ethyl octanoate Sigma Aldrich W244910
Ethyl decanoate Sigma Aldrich W243205
Ethyl dodecanoate Sigma Aldrich W244112
Ethyl lactate Sigma Aldrich W244015
Diethyl succinate Sigma Aldrich W237701
2-methylpropyl acetate Sigma Aldrich W217514
2-methylbutyl acetate Sigma Aldrich W364401
3-methyl butyl acetate Sigma Aldrich 287725
2-phenylethyl acetate Sigma Aldrich 290580
2-methylpropanol Sigma Aldrich 294829
2-methylbutanol Sigma Aldrich 133051
3-methylbutanol Sigma Aldrich 309435
Hexanol Sigma Aldrich 128570
2-phenylethanol Sigma Aldrich 77861
Propanoic acid Sigma Aldrich 94425
Butanoic acid Sigma Aldrich 19215
2-methylpropanoic acid Sigma Aldrich 58360
2-methylbutanoic acid Sigma Aldrich 193070
3-methylbutanoic acid Sigma Aldrich W310212
Hexanoic acid Sigma Aldrich 153745
Octanoic acid Sigma Aldrich W279900
Decanoic acid Sigma Aldrich W236403
Dodecanoic acid Sigma Aldrich L556
Fermentor 1L Legallais AT1357 Fermenter handmade for fermentation
Disposable vacuum filtration system Dominique Deutscher 029311
Fermenters (250 ml) Legallais AT1352 Fermenter handmade for fermentation
Sterile tubes Sarstedt 62.554.502
Fermentation locks Legallais AT1356 Fermetation locks handmade for fermentation
BactoYeast Extract Becton, Dickinson and Company 212750
BactoPeptone Becton, Dickinson and Company 211677
Incubator shaker Infors HT
Particle Counter Beckman Coulter 6605697 Multisizer 3 Coulter Counter
Centrifuge Jouan GR412
Plate Butler Robotic system Lab Services BV PF0X-MA Automatic instrument
Plate Butler Software Lab Services BV Robot monitor software
RobView In-house developed calculation software
My SQL International source database
Cimarec i Telesystem Multipoint Stirrers Thermo Fisher Scientific 50088009 String Drive 60
BenchBlotter platform rocker Dutscher 60903
Ammonia enzymatic kit R-Biopharm AG 5390
Spectrophotometer cuvettes VWR 634-0678
Spectrophotometer UviLine 9400 Secomam
Amino acids standards physiological – acidics and neutrals Sigma Aldrich A6407
Amino acids standards physiological – basics Sigma Aldrich A6282
Citrate lithium buffers – Ultra ninhydrin reagent Biochrom BC80-6000-06
Sulfosalycilic acid Sigma Aldrich S2130
Norleucine Sigma Aldrich N1398
Biochrom 30 AAA Biochrom
EZChrom Elite Biochrom Instrument control and Data analysis software
Ultropac 8 resin Lithium Biochrom BC80-6002-47 Lithium High Resolution Physiological Column
Filter Millex GV Merck Millipore SLGVX13NL Millex GV 13mm (pore size 0.22 µm)
Membrane filter PALL VWR 514-4157 Supor-450 47mm 0.45µm
Vacuum pump Millivac Mini Millipore XF5423050
Aluminium smooth weigh dish 70mm VWR 611-1380
Precision balance Mettler Specifications AE163
Dimethyl sulfoxid dried Merck 1029310161 (max. 0.025% H2O) SeccoSolv
Combustion oven Legallais
Pierce BCA protein assay kit Interchim UP40840A
Formic acid Fluka 94318
Hydrogen peroxide Sigma Aldrich H1009
Hydrochloric Acid Fuming 37% Emsure Merck 1003171000 Grade ACS,ISO,Reag. Ph Eur
Lithium acetate buffer Biochrom 80-2038-10
Commercial solution of hydrolyzed amino acids Sigma Aldrich AAS18
L-Methionine sulfone Sigma Aldrich M0876
L-Cysteic acid monohydrate Sigma Aldrich 30170
Pyrex glass culture tubes Sigma Aldrich Z653586
Pyridine Acros Organics 131780500 99% Extrapure
Ethyl chloroformate Sigma Aldrich 23131
Dichloromethane Sigma Aldrich 32222
Vials Sigma Aldrich 854165
Microinserts for 1.5ml vials Sigma Aldrich SU860066
GC/MS Agilent Technologies 5890 GC/5973 MS
Chemstation Agilent Technologies Instrument control and data analysis software
Methanol Sigma Aldrich 34860 Chromasolv, for HPLC
Acetonitrile Sigma Aldrich 34998 ChromasolvPlus, for HPLC
N,N-Dimethylformamide dimethyl acetal Sigma Aldrich 394963
BSTFA Sigma Aldrich 33024
DB-17MS column Agilent Technologies 122-4731 30m*0.25mm*0.15µm
Sodium sulfate, anhydrous Sigma Aldrich 238597
Technical nitrogen Air products 14629
Zebron ZB-WAX column Phenomenex 7HG-G007-11 30m*0.25mm*0.25µm
Helium BIP Air products 26699
Glass Pasteur pipettes VWR 612-1702

References

  1. Osterlund, T., Nookaew, I., Nielsen, J. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv. 30, 979-988 (2012).
  2. Gombert, A. K., Moreirados Santos, M., Christensen, B., Nielsen, J. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol. 183, 1441-1451 (2001).
  3. Wiechert, W. 13C metabolic flux analysis. Metab Eng. 3, 195-206 (2001).
  4. Fischer, E., Zamboni, N., Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem. 325, 308-316 (2004).
  5. Rantanen, A., Rousu, J., Jouhten, P., Zamboni, N., Maaheimo, H., Ukkonen, E. An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics. 9, 266 (2008).
  6. Zamboni, N. 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol. 22, 103-108 (2011).
  7. Kruger, N. J., Ratcliffe, R. G. Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie. 91, 697-702 (2009).
  8. Quek, L. -. E., Dietmair, S., Krömer, J. O., Nielsen, L. K. Metabolic flux analysis in mammalian cell culture. Metab Eng. 12, 161-171 (2010).
  9. Perpete, P., Santos, G., Bodart, E., Collin, S. Uptake of amino acids during beer production: The concept of a critical time value. J Am Soc Brew Chem. 63, 23-27 (2005).
  10. Magasanik, B., Kaiser, C. A. Nitrogen regulation in Saccharomyces cerevisiae. Gene. 290, 1-18 (2002).
  11. Ljungdahl, P. O., Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 190, 885-929 (2012).
  12. Cooper, T. G., Strathern, J. N., Jones, E. W., Broach, J. R. Nitrogen metabolism in Saccharomyces cerevisiae. The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. , 39-99 (1982).
  13. Jones, E. W., Fink, G. R., Strathern, J. N., Jones, E. W., Broach, J. R. Regulation of amino acid and nucleotide biosynthesis in yeast. The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. , 182-299 (1982).
  14. Hazelwood, L. A., Daran, J. -. M., van Maris, A. J. A., Pronk, J. T., Dickinson, J. R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 74, 2259-2266 (2008).
  15. Bely, M., Sablayrolles, J. M., Barre, P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng. 70, 246-252 (1990).
  16. Forster, J., Famili, I., Fu, P., Palsson, B. O., Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253 (2003).
  17. Millard, P., Letisse, F., Sokol, S., Portais, J. C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics. 28, 1294-1296 (2012).

Play Video

Cite This Article
Bloem, A., Rollero, S., Seguinot, P., Crépin, L., Perez, M., Picou, C., Camarasa, C. Workflow Based on the Combination of Isotopic Tracer Experiments to Investigate Microbial Metabolism of Multiple Nutrient Sources. J. Vis. Exp. (131), e56393, doi:10.3791/56393 (2018).

View Video