Summary

複数の栄養源の微生物代謝を調査するため同位体トレーサー実験の組み合わせに基づいてワークフロー

Published: January 22, 2018
doi:

Summary

このプロトコルでは、定量的かつ包括的に複数の栄養源の代謝を調査する実験手順について説明します。このワークフローは、同位体トレーサー実験と分析手順の組み合わせに基づいて決定する微生物による消費された栄養素の運命と分子 synthetized の代謝の起源をことができます。

Abstract

微生物学の分野の研究は、幅広い方法論の実装に依存します。特に、適切なメソッドの開発は大幅にユニークな窒素と炭素源を含む化学的に定義されているメディアに成長している微生物の代謝の広範な知識を提供することに貢献しています。対照的に、自然や産業の環境の彼らの広範な存在にもかかわらず、複数の栄養源の代謝を通して管理ほぼ未踏のままです。このような状況は、調査を妨げる適切な方法論の不足のために主にです。

定量的かつ包括的には、異なる分子、すなわち、複雑なリソースの混合物として、栄養が提供されるときの代謝の動作を調べる実験方法を報告する.ここでは、酵母の代謝ネットワークを介して複数の窒素源の分割の評価への応用について述べる。ワークフローは、選択された13c や15N 標識基板を用いた安定同位体トレーサー実験時に得られた情報を組み合わせたものです。それは最初の N を含む分子の混合物が含まれています同じ媒体で並列で再現可能な発酵に成っています。ただし、選択した窒素源は、各時間が付いています。分析的手続 (HPLC、GC-MS) の組み合わせを実装するは、ターゲット化合物のラベリング パターンを評価し、消費および他の代謝産物の基板の回収を定量化します。完全なデータセットの統合的解析は、細胞内で消費された基板の運命の概要を説明します。このアプローチが発酵のオンライン監視用ロボット支援システムによるサンプル-容易のコレクションの正確なプロトコルを必要とする- と多くの時間がかかる解析の成果。これらの制約にもかかわらず、それは酵母の代謝ネットワーク全体で複数の窒素源の分割を初めて理解できました。我々 は他の N 化合物へより豊かな情報源からの窒素の再分配を解明し、揮発性分子とアミノ酸の代謝の起源を決定します。

Introduction

理解微生物代謝の動作方法は、発酵プロセスを改善し、発酵化合物の生産を調節する効率的な戦略の設計にとって重要な問題です。ゲノミクス、これらの最後の 2 つの数十年の機能ゲノミクスの進歩は主多くの微生物の代謝ネットワークのトポロジの知識の拡張に貢献しました。この情報へのアクセスは、1細胞機能の包括的な概観を目指すアプローチの開発につながった。これらの方法論はしばしばモデルに基づく測定可能なパラメーターの解釈に依存しています。これらの実験データは一方で、代謝産物の吸収と生産率、そして、同位体トレーサーから得られる定量的な細胞内の情報が、他の一方で、実験します。これらのデータは、定義された代謝ネットワーク2,3,4で異なる経路の体内活動の控除の基本情報を提供します。現在、利用可能な解析技術だけ単一要素の同位体を用いたとき分子のパターンを分類の正確な検出を有効にしておそらく共同 2 つの同位体要素をラベル付けするとき。さらに、ほとんどの成長条件の下で炭素源はのみ 1 つまたは 2 つの化合物の構成します。その結果、炭素基板から13C 同位体トレーサーの手法を用いて広くそして首尾よく適用された炭素代謝ネットワーク操作5,6,7 の完全な理解を開発するには ,8

対照的に、多くの自然と産業環境微生物の発育をサポートする利用可能な窒素リソースは分子の広い範囲の多くの場合で構成します。たとえば、ワインやビールの発酵中に窒素は 18 のアミノ酸と可変濃度9時アンモニウムの混合物として提供されます。この同化のためのアクセス可能な N 化合物の配列は通常アンモニウム窒素のユニークなソースを使用して、後者が達成、大きく異なる生理学的な研究は、一般的に使用されるこれらの複雑なメディア状況を作る。

全体的にみて、窒素化合物を直接タンパク質に組み込むか異化が内在化しています。酵母を含む多くの微生物の窒素代謝のネットワーク構造は基材の多様性に従って非常に複雑です。図解すると、このシステムは、グルタミン、グルタミン酸、および α-ケトグルタル酸1011トランスアミナーゼと deaminases の相互変換を触媒する窒素代謝の中核の組み合わせに基づいています。このネットワークを通じてアンモニウムまたは他のアミノ酸のアミン グループを集められ α-ケト酸をリリースします。これらの中間体から中央の炭素代謝 (CCM)12,13synthetized しています。この多数分岐反応と中間体、外因性の窒素源の異化と蛋白質構成アミノ酸の同化作用に関与するは、細胞の同化の要件を満たしています。これらの異なる相互接続されたルート経由でアクティビティは、代謝産物の排泄にもなります。特に、α-ケト酸は、高級アルコールとその酢酸エステル誘導体14製品の感覚のプロファイルに不可欠な貢献を生成するエールリッヒ経路を介してリダイレクトされます。その後、窒素代謝がどのように動作するバイオマス生産と揮発性分子 (香り) の形成に重要な役割を果たしています。

反応、酵素、窒素代謝に関与する遺伝子が広範囲の文献に記載されています。ただし、代謝ネットワーク全体で複数の窒素源の分布の問題がまだ解決されていません。この情報の欠如を説明する 2 つの主な理由があります。まず、窒素代謝ネットワークの重要な複雑さの観点から大量の定量的データは利用できなかったその操作の完全な理解に必要な今まで。第二に、多くの実験的制約と分析法の制限防止 CCM 機能の解明のために以前使用されたアプローチの実装。

これらの問題を克服するために、一連の同位体トレーサー実験からのデータの照合に基づいているシステム レベルのアプローチを開発しました。ワークフローは次のとおりです。
-同じ環境条件の下で発酵のセット実施別選択した栄養源 (基質) はたびにラベルが付いています。
● ラベルの付いた基板と濃度の残留濃度の由来化合物の同位体濃縮発酵の各段階での正確な定量分析法 (HPLC、GC-MS) の組み合わせで派生バイオマスを含む分類された分子の異化。
-それぞれの質量、同位体のバランスの計算消費標識分子と流束比の決定することによって微生物による複数の栄養源の管理のグローバル概要を取得するデータセットのそれ以上の統合解析.

この方法論を適用するには、文化のひずみ/微生物の再現可能な動作に注意を支払わなければなりません。さらに、異なった文化からのサンプルは、同じの明確に定義された発酵進行中に取られなければなりません。本稿で報告した実験的な作品、ロボット支援システムはこれらの制約を考慮して発酵のオンライン監視の使用です。

さらに、研究の科学的な問題に対処する適切なラベル付けされた基板 (化合物、自然とラベルの位置) のセットを選ぶことが不可欠です。ここでは、アルギニン、グルタミン、 15N 標識アンモニアは、グレープ ジュースは、3 つの主要な窒素源として選択されました。これは窒素化合物の消費から蛋白質構成アミノ酸に再分配のパターンを評価する許可。また揮発性分子の生産への貢献と消費されるアミノ酸の炭素骨格の運命を調査することを目指しました。満たすためにこの目的、均一に13C 標識ロイシン、バリン、スレオニン、イソロイシンに含まれていた研究エールリッヒ経路の主要な中間体から派生するアミノ酸として。

全体的に、酵母が外因性窒素源として炭素前駆体の過剰をさらに除去しながら発酵を通してその同化の要件を満たすための再配布によって複雑な窒素リソースを管理する方法を模索して定量的揮発性分子。本稿で報告した実験の手順は、他の微生物によって使用される他の複数の栄養源を調査に適用できます。それは、微生物の代謝に及ぼす遺伝的背景や環境の影響の分析のための適切なアプローチのように見えます。

Protocol

1. 発酵・ サンプリング メディアと発酵の準備注: すべての発酵行われている同じひずみを用いた並行と同じで化学的に定義合成培地 (SM、組成表 1で提供される)、窒素源15アンモニウムとアミノ酸の混合物を含みます。各発酵他のラベルのないまま、単一窒素化合物が均一にラベル付けされた13C や15N フォーム (100%)、排他?…

Representative Results

ワインの発酵中に見つかった複数の窒素源の酵母によって管理を調査するために実装されたワークフローの模式図を図 3に示します。サンプリング、生物学的パラメーター-生育特性、窒素消費パターン、および蛋白質構成アミノ酸-ショー発酵 (図 4) の間で再現性の高いプロファイルの異なるポイント。この一貫性は、?…

Discussion

微生物代謝の操作を理解するための有望なアプローチは、同位体トレーサー実験による代謝ネットワークを通じて化合物の分配を定量化します。この手法は、1 つまたは 2 つのラベルの付いた基板で正常に適用されている間現在実装できません複数標識元素同位体 (すなわち、2 つ以上の基板) を使用してさまざまなソースの代謝を研究します。確かに、利用可能な分析技術は、共同 2 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

ジャン ・ ロッシュ ムレ、シルヴィ Dequin と発酵のロボット支援システムの構想に貢献するジャン = マリー ・ Sabalyrolles とマルティーヌ Pradal、ニコラ ・ ブーヴィエとパスカル Brial テクニカル サポートのために感謝しますこのプロジェクトは、凝った et ミニステール ・ デ ・教育、国立図書館、デ ラによって提供された資金デ ラ テク。

Materials

D-Glucose PanReac 141341.0416
D-Fructose PanReac 142728.0416
DL-Malic acid Sigma Aldrich M0875
Citric acid monohydrate Sigma Aldrich C7129
Potassium phosphate monobasic Sigma Aldrich P5379
Potassium sulfate Sigma Aldrich P0772
Magnesium sulfate heptahydrate Sigma Aldrich 230391
Calcium chloride dihydrate Sigma Aldrich C7902
Sodium chloride Sigma Aldrich S9625
Ammonium chloride Sigma Aldrich A4514
Sodium hydroxide Sigma Aldrich 71690
Manganese sulfate monohydrate Sigma Aldrich M7634
Zinc sulfate heptahydrate Sigma Aldrich Z4750
Copper (II) sulfate pentahydrate Sigma Aldrich C7631
Potassium iodine Sigma Aldrich P4286
Cobalt (II) chloride hexahydrate Sigma Aldrich C3169
Boric acid Sigma Aldrich B7660
Ammonium heptamolybdate Sigma Aldrich A7302
Myo-inositol Sigma Aldrich I5125
D-Pantothenic acid hemicalcium salt Sigma Aldrich 21210
Thiamine, hydrochloride Sigma Aldrich T4625
Nicotinic acid Sigma Aldrich N4126
Pyridoxine Sigma Aldrich P5669
Biotine Sigma Aldrich B4501
Ergostérol Sigma Aldrich E6510
Tween 80 Sigma Aldrich P1754
Ethanol absolute VWR Chemicals 101074F
Iron (III) chloride hexahydrate Sigma Aldrich 236489
L-Aspartic acid Sigma Aldrich A9256
L-Glutamic acid Sigma Aldrich G1251
L-Alanine Sigma Aldrich A7627
L-Arginine Sigma Aldrich A5006
L-Cysteine Sigma Aldrich C7352
L-Glutamine Sigma Aldrich G3126
Glycine Sigma Aldrich G7126
L-Histidine Sigma Aldrich H8000
L-Isoleucine Sigma Aldrich I2752
L-Leucine Sigma Aldrich L8000
L-Lysine Sigma Aldrich L5501
L-Methionine Sigma Aldrich M9625
L-Phenylalanine Sigma Aldrich P2126
L-Proline Sigma Aldrich P0380
L-Serine Sigma Aldrich S4500
L-Threonine Sigma Aldrich T8625
L-Tryptophane Sigma Aldrich T0254
L-Tyrosine Sigma Aldrich T3754
L-Valine Sigma Aldrich V0500
13C5-L-Valine Eurisotop CLM-2249-H-0.25
13C6-L-Leucine Eurisotop CLM-2262-H-0.25
15N-Ammonium chloride Eurisotop NLM-467-1
ALPHA-15N-L-Glutamine Eurisotop NLM-1016-1
U-15N4-L-Arginine Eurisotop NLM-396-PK
Ethyl acetate Sigma Aldrich 270989
Ethyl propanoate Sigma Aldrich 112305
Ethyl 2-methylpropanoate Sigma Aldrich 246085
Ethyl butanoate Sigma Aldrich E15701
Ethyl 2-methylbutanoate Sigma Aldrich 306886
Ethyl 3-methylbutanoate Sigma Aldrich 8.08541.0250
Ethyl hexanoate Sigma Aldrich 148962
Ethyl octanoate Sigma Aldrich W244910
Ethyl decanoate Sigma Aldrich W243205
Ethyl dodecanoate Sigma Aldrich W244112
Ethyl lactate Sigma Aldrich W244015
Diethyl succinate Sigma Aldrich W237701
2-methylpropyl acetate Sigma Aldrich W217514
2-methylbutyl acetate Sigma Aldrich W364401
3-methyl butyl acetate Sigma Aldrich 287725
2-phenylethyl acetate Sigma Aldrich 290580
2-methylpropanol Sigma Aldrich 294829
2-methylbutanol Sigma Aldrich 133051
3-methylbutanol Sigma Aldrich 309435
Hexanol Sigma Aldrich 128570
2-phenylethanol Sigma Aldrich 77861
Propanoic acid Sigma Aldrich 94425
Butanoic acid Sigma Aldrich 19215
2-methylpropanoic acid Sigma Aldrich 58360
2-methylbutanoic acid Sigma Aldrich 193070
3-methylbutanoic acid Sigma Aldrich W310212
Hexanoic acid Sigma Aldrich 153745
Octanoic acid Sigma Aldrich W279900
Decanoic acid Sigma Aldrich W236403
Dodecanoic acid Sigma Aldrich L556
Fermentor 1L Legallais AT1357 Fermenter handmade for fermentation
Disposable vacuum filtration system Dominique Deutscher 029311
Fermenters (250 ml) Legallais AT1352 Fermenter handmade for fermentation
Sterile tubes Sarstedt 62.554.502
Fermentation locks Legallais AT1356 Fermetation locks handmade for fermentation
BactoYeast Extract Becton, Dickinson and Company 212750
BactoPeptone Becton, Dickinson and Company 211677
Incubator shaker Infors HT
Particle Counter Beckman Coulter 6605697 Multisizer 3 Coulter Counter
Centrifuge Jouan GR412
Plate Butler Robotic system Lab Services BV PF0X-MA Automatic instrument
Plate Butler Software Lab Services BV Robot monitor software
RobView In-house developed calculation software
My SQL International source database
Cimarec i Telesystem Multipoint Stirrers Thermo Fisher Scientific 50088009 String Drive 60
BenchBlotter platform rocker Dutscher 60903
Ammonia enzymatic kit R-Biopharm AG 5390
Spectrophotometer cuvettes VWR 634-0678
Spectrophotometer UviLine 9400 Secomam
Amino acids standards physiological – acidics and neutrals Sigma Aldrich A6407
Amino acids standards physiological – basics Sigma Aldrich A6282
Citrate lithium buffers – Ultra ninhydrin reagent Biochrom BC80-6000-06
Sulfosalycilic acid Sigma Aldrich S2130
Norleucine Sigma Aldrich N1398
Biochrom 30 AAA Biochrom
EZChrom Elite Biochrom Instrument control and Data analysis software
Ultropac 8 resin Lithium Biochrom BC80-6002-47 Lithium High Resolution Physiological Column
Filter Millex GV Merck Millipore SLGVX13NL Millex GV 13mm (pore size 0.22 µm)
Membrane filter PALL VWR 514-4157 Supor-450 47mm 0.45µm
Vacuum pump Millivac Mini Millipore XF5423050
Aluminium smooth weigh dish 70mm VWR 611-1380
Precision balance Mettler Specifications AE163
Dimethyl sulfoxid dried Merck 1029310161 (max. 0.025% H2O) SeccoSolv
Combustion oven Legallais
Pierce BCA protein assay kit Interchim UP40840A
Formic acid Fluka 94318
Hydrogen peroxide Sigma Aldrich H1009
Hydrochloric Acid Fuming 37% Emsure Merck 1003171000 Grade ACS,ISO,Reag. Ph Eur
Lithium acetate buffer Biochrom 80-2038-10
Commercial solution of hydrolyzed amino acids Sigma Aldrich AAS18
L-Methionine sulfone Sigma Aldrich M0876
L-Cysteic acid monohydrate Sigma Aldrich 30170
Pyrex glass culture tubes Sigma Aldrich Z653586
Pyridine Acros Organics 131780500 99% Extrapure
Ethyl chloroformate Sigma Aldrich 23131
Dichloromethane Sigma Aldrich 32222
Vials Sigma Aldrich 854165
Microinserts for 1.5ml vials Sigma Aldrich SU860066
GC/MS Agilent Technologies 5890 GC/5973 MS
Chemstation Agilent Technologies Instrument control and data analysis software
Methanol Sigma Aldrich 34860 Chromasolv, for HPLC
Acetonitrile Sigma Aldrich 34998 ChromasolvPlus, for HPLC
N,N-Dimethylformamide dimethyl acetal Sigma Aldrich 394963
BSTFA Sigma Aldrich 33024
DB-17MS column Agilent Technologies 122-4731 30m*0.25mm*0.15µm
Sodium sulfate, anhydrous Sigma Aldrich 238597
Technical nitrogen Air products 14629
Zebron ZB-WAX column Phenomenex 7HG-G007-11 30m*0.25mm*0.25µm
Helium BIP Air products 26699
Glass Pasteur pipettes VWR 612-1702

References

  1. Osterlund, T., Nookaew, I., Nielsen, J. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnol Adv. 30, 979-988 (2012).
  2. Gombert, A. K., Moreirados Santos, M., Christensen, B., Nielsen, J. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol. 183, 1441-1451 (2001).
  3. Wiechert, W. 13C metabolic flux analysis. Metab Eng. 3, 195-206 (2001).
  4. Fischer, E., Zamboni, N., Sauer, U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem. 325, 308-316 (2004).
  5. Rantanen, A., Rousu, J., Jouhten, P., Zamboni, N., Maaheimo, H., Ukkonen, E. An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments. BMC Bioinformatics. 9, 266 (2008).
  6. Zamboni, N. 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol. 22, 103-108 (2011).
  7. Kruger, N. J., Ratcliffe, R. G. Insights into plant metabolic networks from steady-state metabolic flux analysis. Biochimie. 91, 697-702 (2009).
  8. Quek, L. -. E., Dietmair, S., Krömer, J. O., Nielsen, L. K. Metabolic flux analysis in mammalian cell culture. Metab Eng. 12, 161-171 (2010).
  9. Perpete, P., Santos, G., Bodart, E., Collin, S. Uptake of amino acids during beer production: The concept of a critical time value. J Am Soc Brew Chem. 63, 23-27 (2005).
  10. Magasanik, B., Kaiser, C. A. Nitrogen regulation in Saccharomyces cerevisiae. Gene. 290, 1-18 (2002).
  11. Ljungdahl, P. O., Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 190, 885-929 (2012).
  12. Cooper, T. G., Strathern, J. N., Jones, E. W., Broach, J. R. Nitrogen metabolism in Saccharomyces cerevisiae. The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. , 39-99 (1982).
  13. Jones, E. W., Fink, G. R., Strathern, J. N., Jones, E. W., Broach, J. R. Regulation of amino acid and nucleotide biosynthesis in yeast. The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. , 182-299 (1982).
  14. Hazelwood, L. A., Daran, J. -. M., van Maris, A. J. A., Pronk, J. T., Dickinson, J. R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 74, 2259-2266 (2008).
  15. Bely, M., Sablayrolles, J. M., Barre, P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng. 70, 246-252 (1990).
  16. Forster, J., Famili, I., Fu, P., Palsson, B. O., Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244-253 (2003).
  17. Millard, P., Letisse, F., Sokol, S., Portais, J. C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics. 28, 1294-1296 (2012).

Play Video

Cite This Article
Bloem, A., Rollero, S., Seguinot, P., Crépin, L., Perez, M., Picou, C., Camarasa, C. Workflow Based on the Combination of Isotopic Tracer Experiments to Investigate Microbial Metabolism of Multiple Nutrient Sources. J. Vis. Exp. (131), e56393, doi:10.3791/56393 (2018).

View Video