Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

将伽马改性肽核酸自组装成有机溶剂混合物中复杂的纳米结构

Published: June 26, 2020 doi: 10.3791/61351

Summary

本文为有机溶剂混合物中伽马改性肽核酸寡聚物的纳米结构设计和自组装提供了方案。

Abstract

DNA 和 RNA 纳米技术中的当前策略使各种核酸纳米结构在水性或基本水合介质中自组装。在这篇文章中,我们描述了详细的协议,通过独特的可处理、单链、伽马改性肽核酸 (+PNA) 瓷砖的自组装,在有机溶剂混合物中构建纳米纤维结构。每个单链瓦 (SST) 是一个 12 基 +PNA 寡聚物,由两个串联的模块化域组成,每个模块有 6 个基。每个域都可以绑定到相邻链上的相互互补域,使用编程的互补性来形成纳米纤维,可以长到微米的长度。SST 图案由 9 个总寡聚物组成,能够形成 3 螺旋纳米纤维。与形成直径单分散结构的DNA纳米结构相比,这些αPNA系统形成纳米纤维,在有机溶剂混合物自组装过程中沿宽度捆绑。因此,此处描述的自组装协议还包括传统的表面活性剂,硫酸钠 (SDS),以减少捆绑效应。

Introduction

成功建造许多复杂的纳米结构1、23、 456789101112在水性或实质水合介质中使用 天然存在的核酸,如DNA1、2、3、4、5、6、7、8、9、10RNA 11、12等,以往的作品中已经得到证明。然而,自然产生的核酸会经历双面的脂肪构象变化,或在有机溶剂混合物13,14中降低热稳定性

此前,我们的实验室已经报告了一种利用伽马位置改性合成核酸模拟伽马-肽核酸(+PNA)15(1A)构建3螺旋纳米纤维的方法。在16、17领域讨论了这种开发需求以及合成核酸模拟PNA的潜在应用。我们已经表明,通过适应为DNA纳米结构18,19,20提出的单链瓷砖(SST)策略,9个顺序明显的αPNA寡聚物可以设计为在选择极性螺旋有机溶剂混合物(如DMSO和DMF)中形成3螺旋纳米纤维。[PNA寡聚物是商业订购的,根据Sahu等人发布的方法,在每个12基寡聚物的基础上,在每个12基寡聚体上,每个12基寡聚体沿3个γ位置(1个、4个和8个基位)对(R)-二乙二醇(微型PEG)进行了修改21这些伽玛修饰导致与 +PNA 相对于未修改 PNA 的较高结合亲和力和热稳定性相关的级级预组织。

本文是本文对所报道工作的改编,本文对溶剂溶液和DNA替代对基于αPNA的纳米结构15的形成的影响进行了调查。本文的目的是提供设计的详细描述,以及为αPNA纳米纤维的自组装和特性而开发的溶剂适应方法的详细方案。因此,我们首先介绍了模块化SST策略,即使用合成核酸模拟PNA的纳米结构设计的通用平台。

据报道,与每10.5个碱基相比,PNA双工的利形间距每回合18个碱基(图1B)。因此,将演示的 +PNA SST 的域长度设置为 6 个基座,以适应三分之一的完全旋转或 120° 的旋转,从而实现三个三角形排列的螺旋之间的交互。此外,与以前的SST图案不同,每个SST只包含2个域,有效地创造了一个一维功能区状的结构,该结构包装形成一个三螺旋束(图1C)。每个 12 基 +PNA 寡聚物在 1、4 和 8 位置进行伽玛改度,以确保迷你 PEG 组在整个 SST 主题中均匀分布。此外,在图案中,有两种类型的寡聚物:"连续"股存在于单个螺旋和螺旋跨度"交叉"链(图1D)。此外,寡聚物P8和P6分别标有荧光Cy3(绿星)和生物素(黄色椭圆形)(图1D),以便使用荧光显微镜检测结构形成。SST 图案总共由 9 个总寡聚物组成,通过每个域的编程互补,使 3 螺旋纳米纤维与相邻寡聚体上的相应域形成三螺旋纳米纤维(图 1E)。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. [PNA 序列设计]

  1. 下载由加州理工学院23 Winfree 实验室开发的 DNA 设计工具箱 22 下载到包含用于设计序列的编程脚本的文件夹中。
  2. 在该序列设计文件夹中,打开与文件扩展名".m"兼容的第四代编程语言,然后使用以下命令将以前下载的"DNAdesign"文件夹添加到路径中:
    >> 附加路径 DNAdesign
  3. 随后使用以下命令运行以下名为"PNA3naofiber.m"(参见附加图 1)
    >> PNA3nanofiber
  4. 运行此脚本以创建名为"thisSeqs"和"thisScore"的变量。变量"thisSeqs"包含设计的寡聚物的序列,"thisScore"是惩罚分数。
  5. 多次运行脚本以获得最少的分数。表 1 中显示了 20 个 此类运行的示例
  6. 手动确认指定 SST 结构图案生成的序列的每个域所需的 Watson-Crick 互补性。表2中显示了3螺旋纳米纤维结构 的序列规格
  7. 验证生成的序列的以下内容。
    1. 避免使用连续的四个 C 和 G 基座。
    2. 手动选择使用荧光染料和生物素分子进行N-终端功能化的特定序列,以便进行荧光显微镜研究。
    3. 包括至少3个迷你PEG伽玛修改的骨干,使预组织的半级体构象在单链寡聚物,如Sahu 等人描述21

2. 准备+PNA股票链

  1. 通过来自商业制造商的高性能液相色谱 (HPLC) 纯化,获得 50 nmol 刻度合成的 μPNA 成分链。
  2. 将每股分水重新浓缩至300μM浓度。将重新暂停的绞线存放在-20°C冷冻室长达数月,直到需要进行实验。

3. +PNA寡聚子集的熔融曲线研究

  1. 通过在水缓冲液(如1x磷酸盐缓冲盐水(PBS)或首选极性有机溶剂(如二甲基聚酰胺(DMF)或二甲基硫化物(DMSO))中运行熔融曲线研究,获得互补2-寡聚物和3-寡聚物子集不同组合的熔化温度范围(参见图2)。
    注:在>50%的D分曲线的热熔化曲线开始失去上基线,并表现出严重的干扰,部分原因是在实验所需的波长下,DMF的吸水度很高。这是文献24中一个著名的现象。然而,在这些溶剂条件下,每股浓度为 5 μM 时,可以获得熔融曲线。
    1. 从每个寡聚物的 300 μM 库存中为等量 16.7 μL,使最终体积达到 1000 μL,无论是 1x PBS 还是 100% (v/v) DMSO 或 100% (v/v) DMF 有效获得每个寡聚物 5 μM 的最终浓度。将这种寡聚子混合物转移到 1 厘米的光路石英盒中。
    2. 在配备可编程温度块的分光光度计中执行可变温度 UV-Vis 实验。
    3. 以 0.5°u20121 °C 的速率收集 15°u201290 °C 温度范围内熔化曲线的数据点,用于冷却(退火)和加热(熔化)循环。在冷却前将样品在 90°C 下保持 10 分钟,在加热前在 15°C 下保持 10 分钟。确定加热曲线第一导数峰值的熔化温度 (Tm)。
    4. 验证所有溶剂情况下 2-寡聚子集的熔化温度范围是否高于 35°C。此外,验证相应的 3-寡聚物子集包含其等效的 2-寡聚子子集的额外链,由于共同操作性增加,Tm 显著增加。
      注:这将验证单个锅中多个寡聚物的自组装可以合作折叠到所需的纳米结构中,具有合理的热稳定性。

4. 多种不同的+PNA寡聚物的自组装协议

注:要为+PNA纳米结构设计自组装热斜坡协议,慢速斜坡退火是可取的。

  1. 在产生寡聚物序列的情况下,在90至20°C的热循环器冷却中,将样品退火22.5小时。 通常,对于不同溶剂条件,2-寡聚物和3寡聚物+PNA子集的熔化温度在40°u201270°C范围内。
  2. 将热循环器编程如下:在 90 °C 下保持 5 分钟, 以0.1 °C/min的恒定速率从90°C向下斜坡,以0.1°C/3分钟的速度从70°C下降至40°C,以0.1°C/分钟的速度从40°C向下斜坡向下,在4°C下斜坡,在4°C下下降( 见表3)。样品可储存在4°C12°C,在表征前。
    注:虽然我们纳米纤维系统的2和3-寡聚子集可以在1x PBS中形成,而全微米级纳米纤维在1x PBS中聚合。因此,溶剂条件应根据形成结构的规模和大小以及伽马修饰的类型和密度进行优化。
  3. 对于微米尺度长3螺旋纳米纤维,准备退火批次样品在75%DMSO:H2O (v/v),75%DMF:H2O (v/v),40%1,4-二氧烷:H2O (v/v)基于溶剂优化研究15
  4. 准备火种批次,如下所示( 见表4)。首先,从每个寡聚物的300μM主库存中制备10μL子库存,从主库存中分出0.67μL,并使用脱离子水使体积达到10μL。
  5. 每个寡聚物的 20 μM 子库存的 1 μL 等值 1 μL,并将其添加到 200 μL PCR 管中。这占9个寡聚物的9μL总体积。
  6. 为 75% DMSO 和 75% DMF 箱添加 30 μL 无水 DMSO/DMF,再加入 1 μL 的去离子化水,使每个寡聚物的最终体积为 500 nM 最终浓度。加入16μL的1,4-二氧烷,使体积与去维水到40μL的40%二氧烷溶剂条件。
  7. 使用步骤 4.2 中提及的协议将退火批次加载到热循环器和退火器上。

5. 总内部反射荧光 (TIRF) 显微镜成像

  1. 从空移液器提示盒准备湿度室。将大约 5 mL 的水装满包装盒,以防止样品流量通道干燥,所述如下(参见 图 3)。
  2. 使用显微镜幻灯片、2 个双面胶带条和硝基纤维素涂层盖玻片准备流室。要用硝基纤维素涂覆唇,将盖玻片浸入含有0.1%的醋酸胺胺和空气干燥胶合的烧杯中。
    1. 准备硝基纤维素溶液,从商用的2%的醋酸胺醇与乙酰溶剂中稀释20倍。
  3. 通过称重 1 毫克生物素-BSA,在 1 mL 的 1x PBS 中溶解,准备生物素化牛血清白蛋白 (Biotin-BSA) 溶液。通过将流量通道置于一定角度,在 1x PBS 缓冲液中流 15 μL 1 mg/mL 生物素-BSA。在加湿室的室温下,将流量通道孵育2~4分钟。
  4. 在 1 mL 的 1x PBS 中溶解 1 毫克 BSA,准备洗涤缓冲液。通过流动 15 μL 的洗涤缓冲液清洗多余的生物素-BSA。为了钝化表面,在室温下在加湿室中孵育流道2~4分钟。
  5. 通过测量0.5毫克的斯特雷普他丹和1毫克的BSA,然后使用1 mL的1xPBS溶解,准备链球菌素溶液。流量 15 μL 0.5 毫克/mL 斯特雷普他丹在 1x PBS 中含有 1 mg/mL BSA。在加湿室的室温下,将流量通道孵育2~4分钟。流15μL的洗涤缓冲液,洗去未绑定的斯特雷普维丁。
  6. 流 15 μL 以前退火批次的 +PNA 寡聚物,每股浓度为 500 nM,在 75% DMSO、75% DMF 或 40% 1,4-二恶烷条件下。在加湿室的室温下孵育流道2~4分钟。
  7. 在首选溶剂条件下,通过稀释 DMSO 中 10 mM 库存的 Trolox 中的 10 倍(测量 2.5 毫克 Trolox 并溶解在 1 mL 的 DMSO 中)来准备 1 mM Trolox。用 15 μL 1 mM Trolox 的未绑定纳米结构清洗与纳米结构具有相同的溶剂成分。
    注:由于TIRF期间溶剂条件的折射率不同,流道中的>50% DMSO含量会产生轻微的信号干扰,而TIRF通常针对盖滑水TIRF角度进行校准。这可以通过用1 mM Trolox洗涤,用除毒水稀释10 mM Trolox 10倍来纠正。然而,这种技术提供了更清晰的图像,但只可用于评估形成是否发生,因为它在流通道中产生两相微气泡。因此,纳米结构可能在两相的接口上可见,如图 4D所示
  8. 使用配备 TIRF 成像的荧光显微镜,使用 60 倍油浸目标和 1.5 倍放大镜将流通道传输到滑动架和图像上。通过监视 Cy3 通道,以 60 倍或 90 倍的放大率扫描流量通道(参见 图 4)。

6. 透射电子显微镜(TEM)成像

  1. 在50 mL的蒸馏水中,重量为0.5克醋酸兰酸,以准备1%的水化醋酸酯染色溶液。使用附着在注射器上的 0.2 μm 过滤器过滤 1% 水化醋酸酯染色溶液。
    注:或者,2%水化醋酸化酯可以从商业制造商处购买。
  2. 购买市售的 formvar 支持层涂层铜格栅,尺寸为 300 网格。
    注:需要注意的是,formvar支撑层可以通过像DMSO这样的溶剂溶解,超过2分钟。对于更长的样品孵育时间,商用的表层在铜栅片上具有一氧化硅稳定,使网格比碳涂层网格更亲水,并且能够承受强烈的样品条件和电子束,如图 5C所示
  3. 将 4 μL 样品移到栅格上 15 s。使用一块滤纸将滤纸从侧面与栅格接触,从而从样品中脱落。
  4. 立即将 4 μL 的污渍溶液添加到网格上 5 s。
  5. 将污渍与以前一样擦掉,将滤纸对栅格保持 1\u20122 分钟,以确保网格干燥。样品通常应在染色后 1\u20122 h 内进行成像。或者,如果电网完全干燥,则网格可以在成像前 3 天存储在 TEM 网格存储盒中。
  6. 使用以 80 kV 功率运行的传输电子显微镜将网格传输到 TEM 试样支架和图像,放大倍率从 10 K 到 150K( 参见图 5)。

7. 基于选择性用DNA替换的+PNA-DNA杂交的不同形态

  1. 从使用标准脱盐法以25 nmol刻度合成的商业寡核苷酸制造商获得特定序列的DNA寡聚物(见表 5)。以 20 μM 库存浓度使用无 RNase 脱压水重新发送这些 DNA 序列。
  2. 对于连续的+PNA链替换与DNA,序列D3,D5和D9可以取代链p3,p5和p9。同样,对于使用DNA的交叉+PNA链替换,序列D1、D4和D7可以替换链p1、p4和p7。
  3. 每个 +PNA 或 DNA 寡聚物的 20 μM 子库存的 Aliquot 1 μL,并像步骤 2.7 一样将其添加到 200 μL PCR 管中。加入 30 μL 无水 DMSO 和 1 μL 无 RNase 脱毒水,使最终体积达到 40 μL( 参见表 6)。
  4. 使用步骤 4.2 中提及的协议将退火批次加载到热循环器和退火器上。
  5. 使用 TIRF 协议按照第 5 节中的步骤或使用第 6 节中提到的 TEM 成像协议来描述 μPNA-DNA 混合纳米结构(参见 图 6)。

8. 不同浓度的SDS中αPNA纳米纤维的不同形态

  1. 通过测量 20 mg SDS 并在 100 μL 的去化水中溶解,准备 20% (wt/v) SDS 主库存。
  2. 准备 6% (wt/v) SDS 子库存,从 20% SDS 库存中分 3μL,并使用去电化水使体积达到 10 μL。
  3. 将 +PNA 寡聚物最终浓度为 5.25 mM 和 17.5 mM SDS,如下所示。每个 +PNA 寡聚物的 20 μM 子库存的 Aliquot 1 μL,并将其添加到步骤 2.7 中的 200 μL PCR 管中。加入 30 μL 无水 DMSO 和 1 μL 的 6% 和 20% SDS,使最终体积达到 40 μL,分别达到 5.25 mM 和 17.5 mM 的 SDS 最终浓度( 参见表 7)。
  4. 使用步骤 4.2 中提及的协议将不同 SDS 浓度的退火批次加载到热循环器和退火器上。
  5. 使用第 5 节中的步骤或使用第 6 节中提到的 TEM 成像协议(参见图 7 ) 使用 TIRF 协议在存在 SDS 时描述 μPNA 纳米结构

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

上述各节中讨论的协议描述了DNA纳米纤维的经过调整的SST图案的设计,用于使用多种不同αPNA寡聚物的自组装纳米纤维结构的强健生成。本节介绍对从成功娱乐所述协议中获得的数据的解释。

按照第5节所述的TIRF对75%DMSO中退火的αPNA寡聚物样本的TIRF成像方案,H2O (v/v) 最容易提供在微观观察下组织良好的结构的证据,如图4A所示。75% DMF: H2O (v/v) 溶剂条件导致尖刺状或针状纳米结构 (图 4B), 根据我们的经验, 40% 1,4 二氧烷: H2O (v/v) 条件显示使用 TIRF 显微镜 (图4C)时细长纳米结构的稀疏装饰 ( 图 4C ).此外,在 75% DMSO 中形成的 +PNA 纳米管的样品:H2O (v/v) 演示了在 TEM 成像期间以高放大率或纳米分辨率捆绑的纳米纤维,执行第 6 节所述的步骤(图 5)。对纳米结构宽度的定量分析表明,中位宽度为16.3纳米,最大值超过80纳米15。

为了设计一个在有机溶剂混合物中生成+PNA-DNA混合纳米结构的方案,以便使用DNA实现进一步的功能化,重要的是要考虑用异质DNA寡聚物取代SST图案中的寡聚物位置。对于此处描述的纳米管结构,第 7 节中提到的步骤调整为替换连续的 αP+NA 寡聚物的异质 DNA 寡聚物形成直丝结构,而在使用 TIRF 和 TEM 成像查看时替换交叉的 αPNA 寡聚物形成硬质结构(图6)。对被连续DNA寡聚物取代的纳米结构宽度的定量分析表明,中值宽度约为19纳米15。

最后,在调整第 8 节的步骤时,+PNA 纳米纤维采用更薄的形态,在存在低于其临界微麦浓度(CMC,8.2 mM)的 SDS 浓度时,与减少捆绑一致。•与使用TIRF成像时相比,PNA纳米纤维在高SDS浓度下也采用高度网络化的形态(图7)。在SDS存在的情况下自行组装的+PNA寡聚物的TEM成像表明,5.25 mM SDS条件表明,宽度范围为8\u201212 nm的结构捆绑结构减小最大,如图7C所示。

Figure 1
图1:肽核酸寡聚物作为复杂纳米结构的构建基块。
A) DNA(PNA)、PNA和含MP的αPNA单位的化学结构。(图已转载,并经参考文献21许可。(B) PNA-PNA螺旋比DNA-DNA螺旋线扭曲小,每回合有18个碱基,而不是10.5个碱基。(C) 这种三螺旋结构单链瓷砖 (SST) 图案由 9 个不同的 12 基长 +PNA 寡聚物组成,每个基块有两个六基域。(D) 在结构中,有两种类型的寡聚物:"连续"股存在于单个螺旋和螺旋跨度"交叉"链上。(E) 这种18基形结构图案可以聚合形成微米级长丝。面板 B、C 和 E 已经过参考15 的许可修改请单击此处查看此图的较大版本。

Figure 2
图2:不同溶剂条件下选择性+PNA寡聚物的代表性熔体曲线。
显示 6 基域的 2-寡聚物 (p4, p5) 子集可以在 1x PBS 中以合理的热稳定性(黑色曲线)结合。3-寡聚物(p4,p5,p6)子集显示由于1x PBS(蓝色曲线)中合作性增加的热稳定性,当溶剂更改为有机溶剂(如DMF(红色虚线曲线)时,Tm 几乎没有不稳定。图已修改与参考文献15 的许可请单击此处查看此图的较大版本。

Figure 3
图3:样品TIRF成像流体流通道流程图。
一个分步工作流程,指示在流通道组装后为αPNA纳米纤维的TIRF成像进行样品制备所涉及的步骤。 请单击此处查看此图的较大版本。

Figure 4
图4:TIRF显微镜成像的+PNA纳米纤维在不同溶剂条件下自组装。
•PNA纳米纤维使用TIRF显微镜(5μm刻度棒)进行可视化,同时监测Cy3通道时,当P+5寡聚物自组装在(A) 75% DMSO: 水(v/v),(B) 75%DMF:水(v/v)和(C) 40%二恶烷:水(v/v)溶剂条件。(D) 当 +PNA 纳米纤维在 75% DMSO 中自组装时:与流道相联的水 (v/v) 在水中用 1mM Trolox 进行洗涤时,DMSO 水的两相微泡形式与纳米结构沿微泡界面对齐。图已修改与参考文献15 的许可请单击此处查看此图的较大版本。

Figure 5
图5:TEM成像的+PNA纳米纤维在75%的DMSO中自组装:水。(v/v) 使用 formvar 支持层铜 300 网格网格。
A) 在低放大倍率(15倍)下可视化的5PNA纳米纤维的TEM图像。(B) 在高放大倍率(150x)下可视化的+PNA纳米纤维的TEM图像显示纳米管沿宽度以纳米分辨率捆绑。(C) 在低放大率(10倍)下使用铜网格上的 Formvar-Silicon 一氧化硅支撑层对 +PNA 纳米纤维的 TEM 图像进行可视化,允许在剧烈的试样条件下进行成像。图已修改与参考文献15 的许可请单击此处查看此图的较大版本。

Figure 6
图6:基于选择性DNA替代的+PNA-DNA杂交的不同形态。
A) TIRF (5 μm 刻度棒) 和 (C) TEM 图像 (60 倍放大倍率) 在用异源 DNA 寡聚物 (D3, D5 D5 D9) 替换连续的 +PNA 寡聚物(P3、p5、p9)时自组装的 αPNA-DNA 杂交物显示采用直丝形态的纳米管。(B) TIRF (5 μm 刻度棒) 和 (D) TEM 图像 (25 倍放大倍率) 在用异质 DNA 寡聚物 (D1, D4 D7) 替换交叉 +PNA 寡聚物 (p1, p4, p7) 时自组装的 μPNA-DNA 杂交体显示纳米纤维采用硬质形态。图已修改与参考文献15 的许可请单击此处查看此图的较大版本。

Figure 7
图7:在SDS不同浓度的αPNA纳米纤维的不同形态。
在浓度为5.25 mM和(B)17.5 mM时存在SDS的αPNA纳米纤维的TIRF图像(5μm刻度棒)。在 SDS 浓度小于 CMC (8.2 mM) 的情况下进行自组装,显示基于荧光强度的 TIRF 图像的形态更薄。(C) 通过系统的 TEM 图像(100 倍放大倍率)验证,纳米纤维的中位数宽度在 8\u201212 nm 的范围内。在浓度明显高于CMC时,+PNA纳米管似乎通过高度联网的纳米管结构形成高阶组件。图已修改与参考文献15 的许可请单击此处查看此图的较大版本。

MATLAB 脚本字符串输出"thisSeq" 罚分"此分数"
"acttcgcta cgaagggaaa cagtattcctc aacgaacaccc ctcgtggcgcggc ggattgatactg caatcatcgggggttgcttgatg] 0.08
"cctccagg ggaggttcagg cttctcctgaa tgggttctttacaa cggtcttggaagtttac atagtatt" 0.0544
"tcgcagagaca ctgcgaggataa aacggcttatcc ccacttgccgcgggtgcgatt tgtcatt atgtggtt acataccaa cggcttgta" 0.0688
"gagcctact ggctcttgata tttcgctatcaa tccacgacc cgtggacaataaagtaggttg acagatggga atcttttt ggcggtaggttttgggttttggggatagtttt 0.0528
"cgaaccac ctccgtttagg ctttagttg cttcgccgctacgggttcatcg gcaatagtcaag tattgct gcgagtagcagg' 0.0656
"aatgagccgtgc ctcatct taggcagataa ctccccaacgaggtcc gcacggactg caatacgta gtattgggaa ttgtttcctc" 0.0592
"gatgagcc tccatcgccttccccagagacaggc aagtcaagg tgactattggctcaataa gcaacgctg cgttctcggtg cctcccga' 0.0688
"tagccagt ggctctcgt ttcaggacgga cttgcggtgtcg cgcaaggtatt actgattacctgaa tatccgaccctcgaccctgctct " 0.0656
"taggcaacagac tgcctaccactc ttgagagtgg tagctgcggggttattcatc gtctgtgtgatgaa ttcgtccca cgaccttaccagaggt" 0.0736
"aatgtgtctatcccaattc ccgccaagaag gtgctgttatgc cagcacgatatagatatagtc cctcttggcg ccgaggc gcatatagga" 0.0768
\ttggcgttatcc cgccattgggacat accgagtgaacacctgtgtc ggataagc tctacatctctgtcc tgtaggc tgttcagcac' 0.0576
"ctgtagtctc ttacaggtgctt cacgcagcac ttcgaatggag cccgacaatt gagaccagattg gcggactgcgtg gtccccctctccatccattag" 0.072
"actcatctat tggtt ctacaca a cgctcaagtaat tgagcgaacggc atagatggtt ctgcggtag ccgcagctc attactgagagcc] 0.064
\ggttgttccacg acaacctgaagc ttatgtctca ttgcgcgggaatc cgtggagaaga ctactgacata cagtagacgatg cgctcgccgcgtaggaaga ctactgacata cagtagacgatg cgctcgcatcgtt' 0.0688
"gatttgctgtct caaatct agcgttagagg catacccag tttatgccc 阿加卡格特加格 ctacgacgct ccgtagtcgctctggggacgggggacg" 0.0688
"gaaggtttatg accttcatcctg gcagttcaggat ttggtagcggag tccatcttccattagcgatt acgacaactgc tgtcgccactt" 0.0576
'tgtagttgtct actacaccttg ggacatcaag ttcgggg gccgacctaa agaccattagcg acgagtatgtcc actcgtattg ccgcctct" 0.0624
"tgaccttgta gttccattcgca atcacctccggaa ccacactcttggttttcggct tacaagaggggaggggggttgatgat aacgctcgatat caggatag' 0.0656
"阿加格特格特 · 阿克茨特格特 · 克格特克 · 阿克茨卡加 · 加格茨卡奇 · 阿塔加特格 · 塔加奇 · 格查格加 · 特格特格克格 · 特格特格克格 " 0.0688
"cggcaacatg ttgccgattt acttacgaat cgtgtcctagg gacacgattccatc tgaggcgtaagt gcccacga ctttagtcgctg" 0.0704

表1:20个参数算法结果,用于对+PNA序列设计进行潜在优化。 20 个 样本算法结果 ,第 1 列中的序列输出及其第 2 列中的相应分数。执行脚本的重复迭代以获得最少的分数。

•PNA 序列 ID 序列 域 1 补充 域 2 补码
p1 N - Aatagcgttcac - c p2 域 1 p6-生物素域 1
p2 N - gctattgagtaa - c p1 域 1 p3 域 2
p3 N - 加卡特克特克 - c p7 域 2 p2 域 2
p4 N - ctggcgtgggg - c p5 域 1 p9 域 1
p5 N - Cgccagctcg - c p4 域 1 p6-生物素域 2
p6-生物素 N - 生物素 - 马加奇加 - c p1 域 2 p5 域 2
p7 N - agttgatgtc - c p8-Cy3 域 1 p3 域 1
p8-Cy3 N - Cy3 - Aactacagaa - c p7 域 1 p9 域 2
p9 N - tcccattctgt - c p4 域 2 p8-Cy3 域 2

表2:纳米纤维的+PNA序列设计结果。如本表所示,生成了单独的寡聚物序列。带下划线的基础表示使用微型 PEG 进行伽马位置修改。表已修改,并具有参考文献15 的权限

温度范围 斜坡速率
90 °C 保持3分钟
90-80 °C 0.1°C/分钟
80-70 °C 0.1°C/分钟
70-60 °C 0.1°C/3 分钟
60-50 °C 0.1°C/3 分钟
50-40 °C 0.1°C/3 分钟
40-30 °C 0.1°C/分钟
30-20 °C 0.1°C/分钟
4 °C 无限期保留

表3:热循环器的退体斜坡协议。 表已修改,并具有参考文献15 的权限

库存浓度 75% DMSO:水(v/v)退火样品 75% DMF:水(v/v)退火样品 40% 二恶烷:水(V/v)退火样品 最终浓度
•PNA 寡聚物 (x9) 20 μM 9 μL (1 μL x 9) 9 μL (1 μL x 9) 9 μL (1 μL x 9) 500 nM
Dmso - 30 μL - - 75 % (v/v)
Dmf - - 30 μL - 75 % (v/v)
1,4-二恶烷 - - - 16 μL 40 % (v/v)
去水 - 1 μL 1 μL 15 μL 25 或 60% (v/v)
总体积 - 40 μL 40 μL 40 μL -

表4:在不同溶剂条件下制备αPNA寡聚物退火批次的规程。

DNA 序列 ID 序列
D1 5'-AATAGCGTTCAC-3'
D3 5'-GACATCTCTTC-3'
D4 5'-CTGGCGGCGG-3'
D5 5'-CGCCCCTCG-3'
D7 5'-AGTTGATGTC-3'
D9 5'-TCCCATTCTGT-3'

表5:异义DNA序列作为αPNA的替代寡聚物。 表已修改,并具有参考文献15 的权限

库存浓度 DNA连续链替代 DNA 交叉链替换 最终浓度
•PNA 寡聚物 (x6) 20 μM 6 μL (1 μL x 6) 6 μL (1 μL x 6) 500 nM
DNA寡聚物 (x3) 20 μM 3 μL (1 μL x 3) 3 μL (1 μL x 3) 500 nM
Dmso - 30 μL 30 μL 75 % (v/v)
去水 - 1 μL 1 μL 25 % (v/v)
总体积 - 40 μL 40 μL -

表6:在75%DMSO中制备55%的αPNA-DNA混合纳米结构的退火批次的协议:H2Ov/v)通过用等值DNA寡聚物替换连续或交叉的+PNA寡聚物。

库存浓度 低于CMC的SDS浓度 高于CMC的SDS浓度 最终浓度
•PNA 寡聚物 (x9) 20 μM 9 μL (1 μL x 9) 9 μL (1 μL x 9) 500 nM
6% SDS 6% (wt/v) 1 μL - 5.25 mM
20% SDS 20% (wt/v) - 1 μL 17.5 米
Dmso - 30 μL 30 μL 75 % (v/v)
去水 - - - 25 % (v/v)
总体积 - 40 μL 40 μL -

表7:在75%DMSO中制备+PNA纳米结构的退火批次的协议:H2Ov/v)在CMC以下和CMC以上存在SDS浓度的情况下。

补充图1:编程脚本PNA3nanofiber.m用于设计寡聚物序列。请点击这里下载此图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

本文重点介绍对有机溶剂混合物的现有核酸纳米技术方案的适应和改进。此处介绍的方法侧重于在选择极性有机溶剂的固定实验空间内进行修改和故障排除。其他已建立的核酸纳米技术方案尚未在此空间内加以调整,目前尚有未探索的潜力。这可以通过整合在其他领域,如聚合物和肽合成,通常执行在类似的有机溶剂25,26的潜在应用。此外,我们在此重点介绍在练习上述协议时要遵守的关键步骤。

在准备自组装样品时,对于 DMSO 和 DMF 条件,保持水的体积百分比在 25% (v/v) 非常重要。因此,必须认识到用于自组装的有机溶剂也应该来自无水库存。纳米纤维结构具有疏水性,在增加的含水量中聚集。

与能够创建离散长度结构的脚手架DNA折纸方法不同,目前为+PNA纳米纤维和其他先前建立的DNA SST纳米管设计的SST图案不会产生离散长度的结构。纳米管聚合,实现一系列多微米长度(高达11μm)。出于同样的原因,无法量化与结构形成相关的产量。

然而,由于αPNA的未充电肽骨干,在结构形成方面没有对离子平衡的依赖。因此,成像缓冲液不需要包括像Mg2+这样的 cations, 这通常需要稳定由自然产生的核酸产生的纳米结构。

最后,在不同溶剂条件下的αPNA纳米结构捆绑和聚合也取决于自组装过程中引入的单个寡聚物浓度。单个寡聚物的浓度从 1 μM 到更高,可增加捆绑和聚集的倾向,并影响 TIRF 或 TEM 成像期间纳米结构的清晰成像。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

提交人声明没有相互竞争的经济利益。

Acknowledgments

这项工作得到了国家科学基金会赠款1739308、NSF CAREER1944130和空军科研办公室赠款F9550-18-1-0199的部分支持。•PNA序列是特鲁科德基因修复公司的图穆尔·斯里瓦斯塔瓦博士的慷慨礼物。我们要感谢埃里克·温弗里博士和里扎尔·哈里阿迪博士就DNA设计工具箱MATLAB代码进行有益的对话。我们还要感谢约瑟夫·苏汉、马拉·沙利文和生物成像中心在收集TEM数据方面提供的援助。

Materials

Name Company Catalog Number Comments
γPNA strands/oligomers Trucode Gene Repair Inc. Section 2.1
UV-Vis Spectrophotometer Agilent Varian Cary 300 Section 3.1.2
Quartz cuvettes Starna 29-Q-10 Section 3.1.1
Thermal cycler Bio Rad C1000 touch Section 4.1
0.2 mL PCR tubes VWR 53509-304 Section 4.5
Anhydrous DMF VWR EM-DX1727-6 Section 4.6
Anhydrous DMSO VWR EM-MX1457-6 Section 4.6
Anhydrous 1,4-Dioxane Fisher Scientific AC615121000 Section 4.6
10X Phosphate Buffered Saline (PBS) VWR 75800-994 Section 3.1.1
Microscope slides VWR 89085-399 Section 5.2
Glass cover slips VWR 48382-126 Section 5.2
2% Collodion in Amyl Acetate Sigma-Aldrich 9817 Section 5.2
Isoamyl Acetate VWR 200001-180 Section 5.2
Biotinylated Bovine Serum Albumin (Biotin-BSA) Sigma-Aldrich A8549 Section 5.3
Bovine Serum Albumin (BSA) Sigma-Aldrich A2153 Section 5.4
Streptavidin Sigma-Aldrich 189730 Section 5.5
Trolox Sigma-Aldrich 238813 Section 5.7
Total Internal Reflection Fluorescence microscope Nikon Nikon Ti2-E Section 5.8
Transmission Electron Microscope Joel JEM 1011 Section 6.6
Tweezers Dumont 0203-N5AC-PO Section 6.3
Uranyl Acetate Electron Microscopy Sciences 22400 Section 6.1
Formvar, 300 mesh, Copper grids Ted Pella Inc. 1701-F Section 6.2
Formvar-Silicon monoxide Type A, 300 mesh, Copper grids Ted Pella Inc. 1829 Section 6.2
DNA oligomers/strands IDT Section 7.1
Sodium Dodecyl Sulphate (SDS) VWR 97064-860 Section 8.1

DOWNLOAD MATERIALS LIST

References

  1. Fu, T. J., Seeman, N. C. DNA double-crossover molecules. Biochemistry. 32 (13), 3211-3220 (1993).
  2. Winfree, E., Liu, F., Wenzler, L. A., Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature. 394 (6693), 539-544 (1998).
  3. Shih, W., Quispe, J., Joyce, G. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature. 427 (6975), 618-621 (2004).
  4. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature. 440 (7082), 297-302 (2006).
  5. He, Y., et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature. 452 (7184), 198-201 (2008).
  6. Douglas, S. M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 459 (7245), 414-418 (2009).
  7. Andersen, E. S., et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 459 (7243), 73-76 (2009).
  8. Dietz, H., Douglas, S. M., Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science. 325 (5941), 725-730 (2009).
  9. Han, D., et al. DNA origami with complex curvatures in three-dimensional space. Science. 332 (6024), 342-346 (2011).
  10. Liu, Y., Kumar, S., Taylor, R. E. Mix-and-match nanobiosensor design: Logical and spa421 tial programming of biosensors using self-assembled DNA nanostructures. WIREs Nanomedicne Nanobiotechnology. 10, 1518 (2018).
  11. Chworos, A., et al. Building programmable jigsaw puzzles with RNA. Science. 306 (5704), 2068-2072 (2004).
  12. Delebecque, C. J., Lindner, A. B., Silver, P. A., Aldaye, F. A. Organization of intracellular reactions with rationally designed RNA assemblies. Science. 333 (6041), 470-474 (2011).
  13. Wang, X., Lim, H. J., Son, A. Characterization of denaturation and renaturation of DNA for DNA hybridization. Environmental health and toxicology. 29, 2014007 (2014).
  14. Bonner, G., Klibanov, A. M. Structural stability of DNA in nonaqueous solvents. Biotechnology and Bioengineering. 68, 339 (2000).
  15. Kumar, S., Pearse, A., Liu, Y., Taylor, R. E. Modular self-assembly of gamma-modified peptide nucleic acids in organic solvent mixtures. Nature Communications. 11 (1), 1-10 (2020).
  16. Barluenga, S., Winssinger, N. PNA as a biosupramolecular tag for programmable assemblies and reactions. Accounts of chemical research. 48, 1319-1331 (2015).
  17. Berger, O., Gazit, E. Molecular self-assembly using peptide nucleic acids. Peptide Science. 108, 22930 (2017).
  18. Rothemund, P. W., et al. Design and characterization of programmable DNA nanotubes. Journal of American Chemical Society. 126, 16344-16352 (2004).
  19. Yin, P., et al. Programming DNA tube circumferences. Science. 321, 824-826 (2008).
  20. Yang, Y., et al. Self-assembly of DNA rings from scaffold-free DNA tiles. Nano Letters. 13, 1862-1866 (2013).
  21. Sahu, B., et al. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing -peptide nucleic acids with superior hybridization properties and water solubility. Journal of Organic Chemisty. 76, 5614-5627 (2011).
  22. DNA Sequence Design Tools. , Available from: http://www.dna.caltech.edu/DNA_Sequence_Design_Tools/ (2020).
  23. Dirks, R. M., Lin, M., Winfree, E., Pierce, N. A. Paradigms for computational nucleic acid design. Nucleic Acids Research. 32 (4), 1392-1403 (2004).
  24. Sen, A., Nielsen, P. E. On the stability of peptide nucleic acid duplexes in the presence of organic solvents. Nucleic Acids Research. 35, 3367-3374 (2007).
  25. Yang, Z., Williams, D., Russell, A. J. Synthesis of protein-containing polymers in organic solvents. Biotechnology and Bioengineering. 45, 10-17 (1995).
  26. Coin, I., Beyermann, M., Bienert, M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nature Protocols. 2, 3247 (2007).

Tags

生物工程,第160期,肽核酸,结构纳米技术,单链瓷砖,异种核酸自组装,有机溶剂混合物,PNA纳米技术,无脚手架自组装
将伽马改性肽核酸自组装成有机溶剂混合物中复杂的纳米结构
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Kumar, S., Liu, Y., Taylor, R. E.More

Kumar, S., Liu, Y., Taylor, R. E. Self-Assembly of Gamma-Modified Peptide Nucleic Acids into Complex Nanostructures in Organic Solvent Mixtures. J. Vis. Exp. (160), e61351, doi:10.3791/61351 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter