-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Bioengineering
Engineering ‘Golden’ Fluorescence by Selective Pressure Incorporation of Non-canonica...
Engineering ‘Golden’ Fluorescence by Selective Pressure Incorporation of Non-canonica...
JoVE Journal
Bioengineering
This content is Free Access.
JoVE Journal Bioengineering
Engineering ‘Golden’ Fluorescence by Selective Pressure Incorporation of Non-canonical Amino Acids and Protein Analysis by Mass Spectrometry and Fluorescence

Engineering ‘Golden’ Fluorescence by Selective Pressure Incorporation of Non-canonical Amino Acids and Protein Analysis by Mass Spectrometry and Fluorescence

Full Text
12,121 Views
11:51 min
April 27, 2018

DOI: 10.3791/57017-v

Tobias Baumann1, Franz-Josef Schmitt2, Almut Pelzer1, Vivian Jeanette Spiering3, Georg Johannes Freiherr von Sass1, Thomas Friedrich2, Nediljko Budisa1

1Institute of Chemistry L 1, Department of Biocatalysis,Technical University of Berlin, 2Institute of Chemistry PC 14, Department of Bioenergetics,Technical University of Berlin, 3Institute of Chemistry TC 7, Department of Physical Chemistry/Molecular Material Sciences,Technical University of Berlin

Summary

Synthetic biology enables the engineering of proteins with unprecedented properties using the co-translational insertion of non-canonical amino acids. Here, we presented how a spectrally red-shifted variant of a GFP-type fluorophore with novel fluorescence spectroscopic properties, termed "gold" fluorescent protein (GdFP), is produced in E. coli via selective pressure incorporation (SPI).

Transcript

The goal of this experiment is to replace a canonical amino acid by a non-canonical amino acid for recombinant protein production by selective pressure incorporation to produce the novel gold fluorescent protein. The method of selective pressure incorporation is intended to produce proteins with novel chemical features. This is especially useful when attempting to understand or to engineer protein function.

The main advantage of this technique is that it is relatively simple to conduct because it similar to common recombinant protein production. Time-and wavelength-correlated fluorescence is helpful to investigate the excited state dynamics of the modified protein, which in turns makes it easier to understand the influence of the non-canonical amino acid introduced into the chromophore on the optical properties. SPI can, in principle, be applied to any protein production setting for which auxotrophic strains and chemically defined media are available.

This includes other bacterial strains and also mammalian cell culture. The timing and the setup of expression conditions are critical since it's mandatory to suppress the production of the non-modified wild-type protein. That's why certain parameters such as the temperature, the time of induction, or the composition of the cultivation medium need to be optimized.

We first had the idea for this method after initial studies of protein extract with methyl-containing amino acids such as selenomethionine. Demonstrating the procedure will be Almut Pelzer, a student from my laboratory. To begin this procedure, transform tryptophan auxotrophic E.coli cells with the expression plasmid for ECFP.

Use a single colony to inoculate a preculture of five milliliters LB medium supplemented with ampicillin in a culture tube. Incubate overnight at 37 degrees Celsius and 200 rpm. The next day, inoculate 100 milliliters of supplemented NMM19 medium using one milliliter of the overnight culture in a one-liter Erlenmeyer flask.

Then, incubate the culture overnight in an orbital shaker at 200 rpm and 30 degrees Celsius. The next day, measure the optical density at 600 nanometers every 30 minutes until the value changes by less than 0.05 over 30 minutes. Next, centrifuge the culture at 5, 000 times g and four degrees Celsius for 10 minutes to harvest the bacterial cells.

Discard the supernatant by decanting. Resuspend the cells in NMM19 medium supplemented with ampicillin to a total volume of 100 milliliters. Transfer this suspension back to the same Erlenmeyer flask.

Add 4-amino-indole to a final concentration of one millimolar. Incubate in an orbital shaker for 30 minutes at 30 degrees Celsius and 200 rpm. After 30 minutes, add IPTG to the culture to a final concentration of 0.5 millimolar to induce target gene expression.

Incubate overnight in an orbital shaker at 30 degrees Celsius and 200 rpm. The next day, harvest the bacterial cells by centrifuging at 5, 000 times g and four degrees Celsius for 10 minutes. Discard the supernatant by decanting.

Freeze the cell pellet at minus 20 degrees Celsius or minus 80 degrees Celsius until ready to perform target protein purification. First, prepare the bacterial cell lysate as outlined in the text protocol. After preparing the chromatography column according to the manufacturer's instructions, use binding buffer to equilibrate the immobilized metal ion affinity chromatography column.

Load the lysate on the column until completion. Notice the gold-colored protein bound to the chromatography resin. Wash the column with binding buffer.

Then, elute the target protein using elution buffer. Collect and pool any eluted fractions that contain gold fluorescent protein, which can be identified by the visible golden color. After this, prepare a dialysis membrane with a molecular weight cutoff between 5, 000 and 10, 000 according to the manufacturer's instructions.

Dialyze a one-milliliter sample against at least 100 milliliters of buffer for a minimum of two hours. To begin, use MS buffer to dilute the protein sample to 0.1 milligrams per milliliter, such that the final volume is 80 microliters. Pipette carefully to mix.

Transfer the solution to an MS autosampler vial with glass insert, and close it with a cap. Flick the vial to remove air bubbles. Next, prepare a blank containing MS buffer in a second vial.

Put both vials into the HPLC autosampler. After this, prepare and calibrate the MS instrument according to the manufacturer's instructions. Set the autosampler injection volume to five microliters for the high-performance liquid chromatography coupled to electrospray ionization time-of-flight mass spectrometry method.

Create a work list for the blank run, followed by the GdFP sample run. Assign the injection volume, the corresponding autosampler vial positions, and run the work list. To begin, prepare a gold fluorescent protein solution and the detector for time-and wavelength-correlated single photon counting as outlined in the text protocol.

Using single photon counting software, acquire fluorescence emission at a count rate of about 200, 000 photons per second until approximately 10, 000 counts are accumulated in the acquisition maximum of the fluorescence decay curves. After this, replace the the sample cuvette with a one-centimeter quartz cuvette filled with colloidal silica in PBS buffer. Take out the laser filter, and adjust the grating for the acquisition of 470-nanometer photons in the central channel of the detector.

Then, acquire the instrumental response function until approximately 10, 000 counts are accumulated in the emission maximum. Convert, fit, and plot the resulting data as outlined in the text protocol to obtain the decay-associated spectra, which represents the dependence of the fluorescence decay times on the emission wavelength. In this study, mass spectrometry is used to confirm that the spectrally red-shifted green fluorescent protein-type fluorophore variant, termed gold fluorescent protein, is produced successfully.

While wild-type ECFP has a calculated protein mass of 28, 283.9 daltons after the chromophore maturation, the corresponding mass of gold fluorescent protein is 28, 313.9 daltons. The deconvoluted ESI-MS spectrum of gold fluorescent protein exhibits a main mass peak at approximately 28, 314.1 daltons, deviating from the theoretical value by less than 10 parts per million. This confirms the incorporation of the non-canonical amino acid by selective pressure incorporation.

The absorption spectrum of ECFP has two characteristic maxima at 434 nanometers and 452 nanometers. In contrast, gold fluorescent protein is characterized by one broad red-shifted absorption band with the maximum at 466 nanometers. While the absorption maximum of EGFP is further red-shifted to 488 nanometers, the fluorescence emission spectrum of gold fluorescent protein and the corresponding Stokes shift of GdFP signifies that it is the most red-shifted of all the derivatives of Aequorea victoria green fluorescent protein.

The time-resolved fluorescence emission monitored by single photon counting is shown here. The decay curves exhibit a slightly faster fluorescence decay at 600 nanometers than at 550 nanometers. The fluorescence emission of gold fluorescent protein strongly depends on pH, as is typical for many green fluorescent protein variants.

As seen here, there is a clear decrease in the fluorescence at lower pH, though the spectral characteristics stay constant. Once mastered, this technique can be done in three days when starting from colonies from transformed bacterial cells or from frozen glycerol stocks. While attempting this procedure, it is important to ensure that the targeted amino acid is depleted.

The ncAA must be taken up by the cell, biocompatible, and incorporated into proteins by the chosen auxotrophic strain. Following this procedure, a large variety of proteins can be generated for engineering purposes. Depending on the target protein methods, like protein stability analyzers, enzymatic activity assays, fluorescence spectroscopy, or protein crystallization, can be used to describe the influence of the non-canonical amino acid on functional and structural properties.

After its development, this technique proved to be very useful in the field of synthetic biology, providing it with new-to-nature proteins and proteomes. This expands the chemical capacities for protein engineering. After watching this video, you should have a good understanding of how to incorporate non-canonical amino acids into recombinant proteins by selective pressure incorporation, how to verify the introduction of an artificial amino acid by mass spectrometry, and how to analyze a fluorescent protein by time-resolved fluorescence.

Explore More Videos

Selective Pressure IncorporationNon-canonical Amino AcidsRecombinant Protein ProductionFluorescent ProteinMass SpectrometryFluorescenceProtein EngineeringAuxotrophic E. ColiNMM19 MediumECFP

Related Videos

Fluorescence-microscopy Screening and Next-generation Sequencing: Useful Tools for the Identification of Genes Involved in Organelle Integrity

12:42

Fluorescence-microscopy Screening and Next-generation Sequencing: Useful Tools for the Identification of Genes Involved in Organelle Integrity

Related Videos

12.5K Views

Fluorescence-Detection Size-Exclusion Chromatography: A Technique to Identify the Integrity of Fluorescent Membrane Proteins upon Detergent Solubilization

03:05

Fluorescence-Detection Size-Exclusion Chromatography: A Technique to Identify the Integrity of Fluorescent Membrane Proteins upon Detergent Solubilization

Related Videos

1.4K Views

Fluorescence Fluctuation Spectroscopy to Study Protein Homo-Oligomerization

04:48

Fluorescence Fluctuation Spectroscopy to Study Protein Homo-Oligomerization

Related Videos

381 Views

Green Fluorescent Protein-based Expression Screening of Membrane Proteins in Escherichia coli

08:46

Green Fluorescent Protein-based Expression Screening of Membrane Proteins in Escherichia coli

Related Videos

33.2K Views

Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System

11:47

Residue-specific Incorporation of Noncanonical Amino Acids into Model Proteins Using an Escherichia coli Cell-free Transcription-translation System

Related Videos

16.1K Views

Fluorescence Anisotropy as a Tool to Study Protein-protein Interactions

10:44

Fluorescence Anisotropy as a Tool to Study Protein-protein Interactions

Related Videos

31K Views

Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells

14:02

Optimizing the Genetic Incorporation of Chemical Probes into GPCRs for Photo-crosslinking Mapping and Bioorthogonal Chemistry in Live Mammalian Cells

Related Videos

8.7K Views

Effect of Fluorescent Proteins on Fusion Partners Using Polyglutamine Toxicity Assays in Yeast

09:23

Effect of Fluorescent Proteins on Fusion Partners Using Polyglutamine Toxicity Assays in Yeast

Related Videos

7K Views

Mass Spectrometry Analysis to Identify Ubiquitylation of EYFP-tagged CENP-A (EYFP-CENP-A)

09:02

Mass Spectrometry Analysis to Identify Ubiquitylation of EYFP-tagged CENP-A (EYFP-CENP-A)

Related Videos

5.8K Views

Residue-Specific Exchange of Proline by Proline Analogs in Fluorescent Proteins: How "Molecular Surgery" of the Backbone Affects Folding and Stability

10:31

Residue-Specific Exchange of Proline by Proline Analogs in Fluorescent Proteins: How "Molecular Surgery" of the Backbone Affects Folding and Stability

Related Videos

3.2K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code