Summary

Administração simples e eficaz e visualização de micropartículas no sistema circulatório de peixes pequenos usando injeção de rim

Published: June 17, 2018
doi:

Summary

Este artigo demonstra os princípios de uma injeção rápida, minimamente invasiva de micropartículas fluorescentes para a circulatory system de peixes pequenos e a visualização na vivo das micropartículas em sangue de peixe.

Abstract

A administração sistémica de tamanho micro partículas em um organismo vivo pode ser aplicada para a visualização da vasculatura, drogas e entrega de vacina, implantação de células transgénicas e pequenos sensores ópticos. No entanto, microinjeções intravenosas em animais de pequenos porte, que são principalmente usados em laboratórios biológicos e veterinários, são muito difíceis e exigem pessoal treinado. Aqui, vamos demonstrar um método robusto e eficiente para a introdução de micropartículas no sistema circulatório do adulto peixe-zebra (Danio rerio) por injeção para o rim de peixe. Para visualizar as micropartículas introduzidas na vasculatura, propomos uma técnica simples de intravital imagem em guelras de peixe. In vivo , monitoramento do zebrafish pH sangue foi realizada utilizando um fluorescente microencapsulado injetado sonda, SNARF-1, para demonstrar uma das possíveis aplicações da técnica descrita. Este artigo fornece uma descrição detalhada do encapsulamento do corante sensíveis ao pH e demonstra os princípios da injeção rápida e visualização das microcápsulas obtidas para in vivo de gravação do sinal fluorescente. O método proposto de injeção é caracterizado por uma taxa de mortalidade baixa (0-20%) e alta eficiência (70-90% de sucesso) e é fácil de instituir utilizando equipamentos comumente disponíveis. Todos os procedimentos descritos podem ser executados em outras espécies de peixes pequenos, tais como guppies e medaka.

Introduction

A administração de microtamanho de partículas em um organismo animal é uma tarefa importante em áreas como a droga e vacina entrega1, vasculatura visualização2, implantação de célula transgénicos3e implantação minúsculo sensor óptico 4 , 5. no entanto, o procedimento de implantação para microescala partículas dentro do sistema vascular dos animais de laboratório pequeno é difícil, especialmente para os organismos aquáticos delicados. Para amostras de pesquisa populares como zebrafish, aconselha-se que estes procedimentos ser esclarecido usando protocolos de vídeo.

Microinjeções intracardíacos e capilares exigem microcirurgia únicas instalações e pessoal treinado para a entrega de microobjects em sangue de zebrafish. Anteriormente, uma retro-orbital injeção manual3 foi sugerido como um método fácil e eficaz para a administração de células toda. No entanto, em nossa experiência, por causa da pequena área da rede capilar de olho, é preciso muita prática para alcançar o resultado desejado desta técnica.

Aqui, descrevemos um método para implantação de micropartículas robusta e eficiente para o sistema circulatório por injeção manual diretamente no tecido renal de zebrafish adulto, que é rica em capilares e vasos renais. Esta técnica baseia-se no protocolo de vídeo para transplante de células para o zebrafish rim6, mas foram eliminados os passos microcirúrgicos traumáticos e demorados. O método proposto é caracterizado por baixa mortalidade (0-20%) e alta eficiência (70-90% de sucesso) e é fácil de instituir utilizando equipamentos comumente disponíveis.

Uma parte importante do protocolo proposto é a visualização das implantado micropartículas (se eles são colorida ou fluorescente) nos capilares de gill, que permite a verificação da qualidade da injeção, uma áspera avaliação relativa do número de injetados de partículas e a deteção do sinal espectral para medições fisiológicas diretamente do sangue circulante. Como um exemplo das possíveis aplicações da técnica descrita, demonstramos o protocolo para medições em vivo do pH do sangue zebrafish usando uma sonda fluorescente microencapsulada, SNARF-1, originalmente sugerido em Borvinskaya et al. 20175.

Protocol

Todos os procedimentos experimentais foram realizados em conformidade com a directiva da União Europeia 2010/63/UE para experiências em animais e foram aprovados do Animal temas pesquisa Comissão do Instituto de biologia na Universidade Estatal de Irkutsk. 1. fabricação de microcápsulas Nota: Microcápsulas carregando uma tintura fluorescente são preparadas usando um conjunto de camada por camada de polieletrolitos oposta carregado7…

Representative Results

Os resultados obtidos vêm de um dos três principais categorias do protocolo apresentado: a formação de micropartículas fluorescentes por encapsulamento de um corante fluorescente (Figura 1), a injeção de rim de microcápsulas com mais visualização no Gill capilares (Figura 2 e 3) e, finalmente, na vivo espectral gravação de fluorescência SNARF-1 para monitorar níveis de pH …

Discussion

Para demonstrar a injeção de micropartículas no rim zebrafish, usamos semi-permeável microcápsulas carregadas com um corante indicador. Assim, o protocolo contém instruções para a preparação das microcápsulas usando o assembly de camada por camada de polieletrolitos oposta carregado7,8,15,16,17 ,18 (<strong class=…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Autores grandemente reconhecem a ajuda de Bogdan Osadchiy e Evgenii Protasov (Universidade Estatal de Irkutsk, Rússia) em preparação do protocolo de vídeo. Esta pesquisa foi apoiada pela Fundação de ciência russo (#15-14-10008) e a Fundação russo de pesquisa básica (#15-29-01003).

Materials

SNARF-1-dextran, 70000 MW Thermo Fisher Scientific D3304 Fluorescent probe. Any other appropriate polymer-bound fluorescent dye can be used as a microcapsule filler
Albumin-fluorescein isothiocyanate conjugate (FITC-BSA) SIGMA A9771 Fluorescent probe
Rhodamine B isothiocyanate-Dextran (RITC-dextran) SIGMA R9379 Fluorescent probe
Calcium chloride SIGMA C1016 CaCO3 templates formation
Sodium carbonate SIGMA S7795 CaCO3 templates formation
Poly(allylamine hydrochloride), MW 50000 (PAH) SIGMA 283215 Cationic polymer
Poly(sodium 4-styrenesulfonate), MW 70000 (PSS) SIGMA 243051 Anionic polymer
Poly-L-lysine [20 kDa] grafted with polyethylene glycol [5 kDa], g = 3.0 to 4.5 (PLL-g-PEG) SuSoS PLL(20)-g[3.5]-PEG(5) Final polymer to increase the biocompatibility of microcapsules
Sodium chloride SIGMA S8776 To dissolve applied polymers
Water Purification System Millipore SIMSV0000 To prepare deionized water
Magnetic stirrer Stegler For CaCO3 templates formation
Eppendorf Research plus pipette, 1000 µL Eppendorf Dosing solutions
Eppendorf Research plus pipette, 10 µL Eppendorf Dosing solutions
Pipette tips, volume range 200 to 1000 µL F.L. Medical 28093 Dosing solutions
Pipette tips, volume range 0.1-10 μL Eppendorf Z640069 Dosing solutions
Mini-centrifuge Microspin 12, High-speed BioSan For microcapsule centrifugation-washing procedure
Microcentrifuge tubes, 2 mL Eppendorf Z666513 Microcapsule synthesis and storage
Shaker Intelli-mixer RM-1L ELMY Ltd. To reduce microcapsule aggregation
Ultrasonic cleaner To reduce microcapsule aggregation
Head phones  To protect ears from ultrasound
Ethylenediaminetetraacetic acid SIGMA EDS To dissolve the CaCO3 templates
Monosodium phosphate SIGMA S9638 Preparation of pH buffers
Disodium phosphate SIGMA S9390 Preparation of pH buffers
Sodium hydroxide SIGMA S8045 To adjust the pH of the EDTA solution and buffers
Thermostat chamber To dry microcapsules on glass slide
Hemocytometer blood cell count chamber To investigate the size distribution and concentration of the prepared microcapsules
Fluorescent microscope Mikmed 2 LOMO In vivo visualization of microcapsules in fish blood
Set of fluorescent filters for SNARF-1 (should be chosen depending on the microscope model; example is provided) Chroma 79010 Visualization of microcapsules with fluorescent probes
Fiber spectrometer QE Pro Ocean Optics Calibration of microcapsules under microscope
Optical fiber QP400-2-VIS NIR, 400 μm, 2 m Ocean Optics To connect spectrometer with microscope port
Collimator F280SMA-A Thorlabs To connect spectrometer with microscope port
Glass microscope slide Fisherbrand 12-550-A3 Calibration of microcapsules under microscope
Coverslips, 22 x 22 mm Pearl MS-SLIDCV Calibration of microcapsules under microscope
Glass microcapillaries Intra MARK, 10 µL Blaubrand BR708709 To collect fish blood
Clove oil SIGMA C8392 Fish anesthesia
Lancet No 11 Apexmed international B.V. P00588 To cut the fish tail and release the steel needle from the tip of insulin autoinjector
Heparin, 5000 U/mL Calbiochem L6510-BC For treating all surfaces that come in contact with fish blood during fish blood collection
Seven 2 Go Pro pH-meter with a microelectrode Mettler Toledo To determine fish blood pH
Insulin pen needles Micro-Fine Plus, 0.25 x 5 mm Becton, Dickinson and Company For injection procedure. Any thin needle (Ø 0.33 mm or less) is appropriate
Glass capillaries, 1 x 75 mm Hirschmann Laborgeräte GmbH & Co 9201075 For injection procedure
Gas torch To solder steel needle to glass capillary
Microinjector IM-9B NARISHIGE For precise dosing of microcapsules suspension
Petri dishes, 60 mm x 15 mm, polystyrene SIGMA P5481 For manipulations with fish under anesthesia
Plastic spoon For manipulations with fish under anesthesia
Damp sponge For manipulations with fish under anesthesia
Dissection scissors Thermo Scientific 31212 To remove the gill cover from the fish head
Pasteur pipette, 3.5 mL BRAND Z331767 To moisten fish gills

References

  1. Rivas-Aravena, A., Sandino, A. M., Spencer, E. Nanoparticles and microparticles of polymers and polysaccharides to administer fish vaccines. Biol. Res. 46 (4), 407-419 (2013).
  2. Yashchenok, A. M., Jose, J., Trochet, P., Sukhorukov, G. B., Gorin, D. A. Multifunctional polyelectrolyte microcapsules as a contrast agent for photoacoustic imaging in blood. J. Biophotonics. 9 (8), 792-799 (2016).
  3. Pugach, E. K., Li, P., White, R., Zon, L. Retro-orbital injection in adult zebrafish. J. Vis. Exp. (34), e1645 (2009).
  4. Gurkov, A., Shchapova, &. #. 1. 0. 4. 5. ;., Bedulina, D., Baduev, B., Borvinskaya, E., Timofeyev, M. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring. Sci. Rep. 6, e36427 (2016).
  5. Borvinskaya, E., Gurkov, A., Shchapova, E., Baduev, B., Shatilina, Z., Sadovoy, A., et al. Parallel in vivo monitoring of pH in gill capillaries and muscles of fishes using microencapsulated biomarkers. Biol. Open. 6 (5), 673-677 (2017).
  6. Diep, C. Q., Davidson, A. J. Transplantation of cells directly into the kidney of adult zebrafish. J. Vis. Exp. (51), e2725 (2011).
  7. Kreft, O., Javier, A. M., Sukhorukov, G. B., Parak, W. J. Polymer microcapsules as mobile local pH-sensors. J. Mater. Chem. 17 (42), 4471-4476 (2007).
  8. Sadovoy, A., Teh, C., Korzh, V., Escobar, M., Meglinski, I. Microencapsulated bio-markers for assessment of stress conditions in aquatic organisms in vivo. Laser Phys. Lett. 9 (7), 542-546 (2012).
  9. Ferreira, T., Rasband, W. S. . ImageJ User Guide – Version 1.44. , (2012).
  10. Poland, R. S., Bull, C., Syed, W. A., Bowers, M. S. Rodent brain microinjection to study molecular substrates of motivated behavior. J. Vis. Exp. (103), e53018 (2015).
  11. Liu, L., Duff, K. A technique for serial collection of cerebrospinal fluid from the cisterna magna in mouse. J. Vis. Exp. (21), e960 (2008).
  12. Johnston, L., Ball, R. E., Acuff, S., Gaudet, J., Sornborger, A., Lauderdale, J. D. Electrophysiological recording in the brain of intact adult zebrafish. J. Vis. Exp. (81), e51065 (2013).
  13. Gerlach, G. F., Schrader, L. N., Wingert, R. A. Dissection of the adult zebrafish kidney. J. Vis. Exp. (54), e2839 (2011).
  14. McKee, R. A., Wingert, R. A. Zebrafish renal pathology: Emerging models of acute kidney injury. Curr Pathobiol Rep. 3 (2), 171-181 (2015).
  15. Donath, E., Sukhorukov, G. B., Caruso, F., Davi, S. A., Möhwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37 (17), 2201-2205 (1998).
  16. Antipov, A. A., Shchukin, D., Fedutik, Y., Petrov, A. I., Sukhorukov, G. B., Möhwald, H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surf. A. 224, 175-183 (2003).
  17. Gaponik, N., Radtchenko, I. L., Gerstenberger, M. R., Fedutik, Y. A., Sukhorukov, G. B., Rogach, A. L. Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals. Nano Lett. 3 (3), 369-372 (2003).
  18. Volodkin, D. V., Larionova, N. I., Sukhorukov, G. B. Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules. 5 (5), 1962-1972 (2004).
  19. Tzaneva, V., Perry, S. F. A Time differential staining technique coupled with full bilateral gill denervation to study ionocytes in fish. J. Vis. Exp. (97), e52548 (2015).
check_url/57491?article_type=t

Play Video

Cite This Article
Borvinskaya, E., Gurkov, A., Shchapova, E., Karnaukhov, D., Sadovoy, A., Meglinski, I., Timofeyev, M. Simple and Effective Administration and Visualization of Microparticles in the Circulatory System of Small Fishes Using Kidney Injection. J. Vis. Exp. (136), e57491, doi:10.3791/57491 (2018).

View Video