Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

Cancer Research

In Vivo Targeting of Xenografted Human Cancer Cells with Functionalized Fluorescent Silica Nanoparticles in Zebrafish

doi: 10.3791/61187 Published: May 8, 2020
Xiaodan Qin*1, Fabrice F. J. Laroche*1, Saquib Ahmed M. A. Peerzade2, Andrew Lam1, Igor Sokolov2,3,4, Hui Feng1
* These authors contributed equally

Abstract

Developing nanoparticles capable of detecting, targeting, and destroying cancer cells is of great interest in the field of nanomedicine. In vivo animal models are required for bridging the nanotechnology to its biomedical application. The mouse represents the traditional animal model for preclinical testing; however, mice are relatively expensive to keep and have long experimental cycles due to the limited progeny from each mother. The zebrafish has emerged as a powerful model system for developmental and biomedical research, including cancer research. In particular, due to its optical transparency and rapid development, zebrafish embryos are well suited for real-time in vivo monitoring of the behavior of cancer cells and their interactions with their microenvironment. This method was developed to sequentially introduce human cancer cells and functionalized nanoparticles in transparent Casper zebrafish embryos and monitor in vivo recognition and targeting of the cancer cells by nanoparticles in real time. This optimized protocol shows that fluorescently labeled nanoparticles, which are functionalized with folate groups, can specifically recognize and target metastatic human cervical epithelial cancer cells labeled with a different fluorochrome. The recognition and targeting process can occur as early as 30 min postinjection of the nanoparticles tested. The whole experiment only requires the breeding of a few pairs of adult fish and takes less than 4 days to complete. Moreover, zebrafish embryos lack a functional adaptive immune system, allowing the engraftment of a wide range of human cancer cells. Hence, the utility of the protocol described here enables the testing of nanoparticles on various types of human cancer cells, facilitating the selection of optimal nanoparticles in each specific cancer context for future testing in mammals and the clinic.

Introduction

The development of nanoparticles that are capable of detecting, targeting, and destroying cancer cells is of great interest to both physicists and biomedical researchers. The emergence of nanomedicine led to the development of several nanoparticles, such as those conjugated with targeting ligands and/or chemotherapeutic drugs1,2,3. The added properties of nanoparticles enable their interaction with the biological system, sensing and monitoring biological events with high efficiency and accuracy along with therapeutic applications. Gold and iron oxide nanoparticles are primarily used in computed tomography and magnetic resonance imaging applications, respectively. While the enzymatic activities of gold and iron oxide nanoparticles allow the detection of cancer cells through colorimetric assays, fluorescent nanoparticles are well suited for in vivo imaging applications4. Among them, ultrabright fluorescent nanoparticles are particularly beneficial, due to their ability to detect cancers early with fewer particles and reduced toxicities5.

Despite these advantages, nanoparticles require experimentation using in vivo animal models for the selection of suitable nanomaterials and optimization of the synthesis process. Additionally, just like drugs, nanoparticles rely on animal models for preclinical testing to determine their efficacy and toxicities. The most widely used preclinical model is the mouse, which is a mammal whose upkeep comes at a relatively high cost. For cancer studies, either genetically engineered mice or xenografted mice are typically used6,7. The length of these experiments often spans from weeks to months. In particular, for cancer metastasis studies, cancer cells are directly injected into the circulatory system of the mice at locations such as tail veins and spleens8,9,10. These models only represent the end stages of metastasis when tumor cells extravasate and colonize distant organs. Moreover, due to visibility issues, it is particularly challenging to monitor tumor cell migration and nanoparticle targeting of tumor cells in mice.

The zebrafish (Danio rerio) has become a powerful vertebrate system for cancer research due to its high fecundity, low cost, rapid development, optical transparency, and genetic conservations11,12. Another advantage of the zebrafish over the mouse model is the fertilization of the fish eggs ex utero, which allows the embryos to be monitored throughout their development. Embryonic development is rapid in zebrafish, and within 24 hours postfertilization (hpf), the vertebrate body plane has already formed13. By 72 hpf, eggs are hatched from the chorion, transitioning from the embryonic to the fry stage. The transparency of the zebrafish, the Casper strain in particular14, provides a unique opportunity to visualize the migration of cancer cells and their recognition and targeting by nanoparticles in a living animal. Finally, zebrafish develop their innate immune system by 48 hpf, with the adaptive immune system lagging behind and only becoming functional at 28 days postfertilization15. This time gap is ideal for the transplantation of various types of human cancer cells into zebrafish embryos without experiencing immune rejections.

Described here is a method that takes advantage of the transparency and rapid development of zebrafish to demonstrate the recognition and targeting of human cancer cells by fluorescent nanoparticles in vivo. In this assay, human cervical cancer cells (HeLa cells) genetically engineered to express a red fluorescent protein were injected into the vascularized area in the perivitelline cavity of 48 hpf embryos. After 20-24 h, HeLa cells had already spread throughout the embryos through the fish circulatory system. Embryos with apparent metastasis were microinjected with ~0.5 nL of a nanoparticle solution directly behind the eye, where the rich capillary bed is located. Using this technique, the ultrabright fluorescent silica nanoparticles can target HeLa cells as quickly as 20-30 min postinjection. Due to its simplicity and effectiveness, the zebrafish represents a robust in vivo model to test a variety of nanoparticles for their ability to target specific cancer cells.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Boston University School of Medicine under the protocol #: PROTO201800543.

1. Generation of Casper zebrafish embryos

  1. Choose adult Casper fish that are at least 3 months of age for natural breeding to generate transparent Casper zebrafish embryos.
  2. Fill two-chamber mating tanks with fish water in the evening, separate the upper tanks using dividers, place one male fish into one side of the chamber and one or two female fish into the other side of the chamber, and leave the fish separated overnight by dividers.
  3. Pull out the dividers the next morning at 8:00 AM when the lights are on. Add artificial enrichment plants and tilt the top chamber slightly to create a shallow area of water. Allow the fish to breed for 3-4 h.
  4. Lift the top chambers of the mating tanks that contain the fish and return them to their original tanks.
  5. Collect eggs located in the bottom chambers by pouring the water through a mesh net. Transfer eggs to a sterile Petri dish at a density no greater than 200 eggs per dish. Remove any dead or unfertilized eggs and fill the dish 2/3 full with fresh fish water.
    NOTE: Fertilized and healthy eggs should be translucent and round. Any eggs that are cloudy, white, or disfigured should be removed. Fish water is obtained from fish tanks in the fish facility.
  6. Incubate embryos in the incubator at 28.5 °C overnight.
  7. Bleach the embryos the next morning using the standard protocol as described in The Zebrafish Book16, and put the embryos back to the incubator (optional step).
  8. Take the 24 hpf embryos out of the incubator in the afternoon and dechorionate the embryos using pronase.
    1. Remove as much fish water as possible from the embryos in the Petri dish and add a few drops of the pronase solution (1 mg/mL in fish water) to the dish. Gently swirl the Petri dish. Once the chorions show signs of disintegration, pipette the embryos up and down a few times to break down the chorions to release the embryos.
    2. Add fresh fish water immediately into the Petri dish to terminate the process once a majority of the embryos are out of the chorions. Rinse the embryos 3x more using fish water to remove the floating chorions. Return the embryos to the incubator.

2. Preparation of human cancer cells for transplantation

  1. Set the incubator temperature to exactly 35.5 °C. Monitor the incubator to ensure a consistent and stable temperature using a thermometer inside the incubator.
  2. Autoclave 1 L of fish water in a glass bottle. Make a 3% agarose solution by adding 3 g of electrophoresis-grade agarose to 100 mL of autoclaved fish water and microwaving until the agarose is completely dissolved.
    1. Pour hot agarose solution into a Petri dish until it is 3/4 full. Place the microinjection mold on the agarose. Ensure that the mold is not in contact with the bottom of the Petri dish and no bubbles form underneath.
    2. Allow the solution to solidify and carefully remove the mold from the plate. Fill the plate with autoclaved fish water and store the plate at 4 °C. Prewarm the agarose plate and fish water in the 35.5 °C incubator before harvesting HeLa cells.
  3. Pull 1.0 mm O.D. x 0.78 mm borosilicate glass capillaries on a pipette puller using the following settings: pressure at 500, heat at 560, pull at 100, velocity at 100, and time/delay at 200. Store needles on putty in a large Petri dish that has been wiped with an ethanol towel.
    CAUTION: Pulled needles are very sharp and fragile. Use caution when handling.
  4. Prepare a stock solution of tricaine methanesulfonate (MS222, 4 mg/mL) by dissolving MS222 into autoclaved fish water. Vortex well before use. Dilute MS222 stock solution 1:100 in fish water (i.e., add 200 µL of MS222 stock solution to 20 mL of fish water to a final concentration of 40 µg/mL) to anesthetize embryos for the following procedures.
  5. Culture hLabel HeLa cells by transducing them with PLenti6.2_miRFP670 lentivirus using the protocol described17. Harvest RFP+ HeLa cells 30 min-1 h before the transplantation.
    NOTE: Human HeLa cells have been cultured in a tissue culture incubator up to 70% confluency in complete growth medium (DMEM medium with 10% FBS) at 37 °C supplemented with 5% CO2.
    1. Remove the HeLa cell medium by aspiration in a tissue culture hood. Briefly rinse the cell layer with sterile PBS to remove all traces of the serum.
    2. Add 3.0 mL of sterile Trypsin-EDTA solution to a T-75 flask and place the cells back into the 37 °C tissue culture incubator for 3-5 min to facilitate enzymatic digestion. Observe the flask under the microscope until ~80% of the cells become suspended.
    3. Add 6-8 mL of complete growth medium into the flask. Collect the cells into a 15 mL sterile tube by gently pipetting. Centrifuge at 135 x g for 5 min.
    4. Aspirate the supernatant and resuspend HeLa cells in 3 mL of complete growth medium. Repeat the above washing step 2x. Resuspend the cells in 1 mL of complete growth medium and count the cells under the microscope using a hemocytometer.
    5. Spin the cells down again, remove the supernatant, and resuspend the cells in a 1.5 mL microcentrifuge tube at a concentration of 5 x 107 cells/mL. Keep the cells warm by holding the tube in one hand when transporting to the fish facility.
      NOTE: Always keep the cells warm by storing the cells inside the 35.5 °C incubator before or during injecting the embryos.

3. Transplantation of human cancer cells

  1. Clean up the work area using ethanol towels before transplantation (e.g., scissors, tweezers, plastic pipettes, razor blades).
  2. Align embryos within the grooves of the agarose plate using a plastic pipette. Lay embryos on the side with the anterior facing forward.
    NOTE: Make sure that the fish water covers the embryos. Set some embryos aside to not inject cancer cells and use as controls.
  3. Turn on the air source and microinjector. Take HeLa cells out of the incubator and pipette the cells up and down 20-30x using a P200 tip. Load 3 µL of cell mixture immediately into a needle using a gel loading tip with a cut end. Carefully insert the tip toward the sharp bottom end of the needle. If needed, shake the needle to ensure the cell mixture moves down the needle to fill up the sharp end.
    1. Insert the needle into the needle holder. Use a pair of tweezers to carefully break open the tip of the needle. Adjust the pressure and duration of time on the microinjector to push out all of the air bubbles inside the needle tip. Reduce the pressure and injection duration time until the size of the injection droplets is ~1 nL.
    2. Place the injection plate under the microscope in an appropriate position to have the yolk side of embryos facing the needle. Anesthetize the embryos by adding five drops of the diluted MS222 solution (40 µg/mL).
    3. Position the injector and allow the needle to touch the perivitelline cavity of each embryo.
  4. Inject the cell mixture into the embryos at the vascularized area under the perivitelline cavity by pressing the foot pedal.
  5. Use the nondominant hand to move the injection plate to the next embryo. Use the dominant hand to extend and retract the injector while pressing the foot pedal simultaneously to continue the injection. Pipette a few drops of sterile fish water onto embryos that have been injected. Once the injection of all embryos on the plate is completed, wash the embryos off with sterile fish water, put them on a sterile Petri dish and immediately move them to the 35.5 °C incubator.
  6. After 3 h, examine the injected embryos and remove the dead ones.
  7. Return the live embryos to the 35.5 °C incubator and incubate them for 20-24 h to allow the HeLa cells to spread from the injection site to other parts of the body.
    NOTE: Embryos are kept in 35.5 °C incubator to allow the survival and migration of human cancer cells because the cells do not do well at 28.5 °C, the temperature fish embryos are normally incubated.

4. Injection of nanoparticles or vehicle

  1. Anesthetize the transplanted embryos the next morning with five drops of diluted MS222 solution. Do not to add too much MS222, because this will kill the embryos. Under a fluorescent microscope, carefully pick up embryos with tail metastasis of RFP+ HeLa cells and place them into a new Petri dish with sterile fish water.
  2. Make the injection needles as previously described in section 2 using the following settings: pressure at 500, heat at 645, pull at 60, velocity at 50, and time/delay at 100.
  3. Follow the procedures in steps 3.1-3.3 to align embryos and load vehicle (e.g., H2O) or the nanoparticle solution into the needle.
  4. Inject 0.5 nL of 1 mg/mL nanoparticle solution behind the eye and continue the injection as described in steps 3.5-3.6 (Figure 1B). This location behind the eyes is enriched with capillaries, allowing the nanoparticles to enter circulation.
  5. Following a similar procedure, inject the vehicle (e.g., H2O) that was used to suspend the nanoparticles into embryos with HeLa cells transplanted and those without (i.e., controls) (Figure 1A, C).
  6. Incubate all injected embryos at 35.5 °C.

5. Imaging and tracking of nanoparticles and cancer cells

  1. Examine injected embryos under a fluorescent microscope at 0, 30, 60, 90, 120, 180, and 210 min postinjection of nanoparticles to monitor their distribution in circulation and the degree of cancer cell targeting. The targeting of cancer cells by nanoparticles can be observed as early as 30 min postinjection depending on the type of nanoparticle tested.
  2. Pipette 2-3 embryos into a Petri dish and immobilize them by adding five drops of diluted MS222 solution (40 µg/mL). Once the embryos stop swimming, remove most of the water to allow the embryos to lie on their sides.
  3. Use a pipette with a thin, soft brush attached to its end to align the embryos so they lie on their sides with the anterior facing forward and only one eye visible.
  4. Image the embryos in red, blue, and brightfield channels at low magnification (2x) to capture the whole embryo and repeat at higher magnification (6.4x) to capture the tail area. Focus the embryo under the red channel to avoid the bleeding of nanoparticles.
    NOTE: The embryos must not move during imaging. Any movement will lead to blurry images and the inability to overlap images from different channels.
  5. Add fresh fish water to the embryos immediately after imaging and return them to the incubator. Repeat steps 5.2-5.4 to image the embryos at different time points.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

The protocol schematic in Figure 1 illustrates the overall procedures for this study. Transparent Casper male and female adult fish were bred to generate embryos (section 1). RFP+ HeLa cells were injected into the vascularized area under the perivitelline cavity of the zebrafish embryos at 48 hpf, with uninjected embryos as controls (section 3). For individuals experienced in microinjection, the survival rate of embryos is often high, with at least 50% of embryos transplanted with cancer cells surviving in the 35.5 °C incubator, a temperature suboptimal for zebrafish embryos but required for the survival and migration of human cancer cells. HeLa cells are highly invasive and can intravasate and spread to the tail region of the embryos as quickly as 8 h postinjection. By 20-24 h post-transplantation, ~50% of embryos transplanted showed signs of metastatic spread of HeLa cells. Those embryos with cancer cell tail metastases were selected for downstream experiments. At 72 hpf, these embryos were subsequently injected behind the eyes either with blue fluorescent nanoparticles (section 4 and Figure 1B) or solely with the vehicle as controls (Figure 1A). Age-matched embryos injected with nanoparticles but without cancer cell transplantation were the second group of controls (Figure 1C). For more detailed information on nanoparticle synthesis, preparation, and characterization see Peerzade et al.18.

At 0, 30, 60, 90, 120, 180, 210 min postinjection of nanoparticles, the injected embryos were monitored by imaging to determine the interaction of nanoparticles with RFP+ HeLa cells, using the vehicle-injected embryos as controls. Specifically, the zebrafish tail areas where RFP+ HeLa cells had spread to were imaged at red, blue, and brightfield illumination using a fluorescent microscope (section 5). The detailed characterization of the ability of the ultrabright nanoparticles to target xenografted cancer cells in zebrafish over time is shown in Figure 5 of Peerzade et al.18. The red dots seen in the tail of the embryos are metastatic human cervical cancer cells that were visible in both vehicle- and nanoparticle-injected embryos (Figure 2A, D; Figure 3A, D). As expected, no specific blue fluorescent signals were detected in embryos with the vehicle-only injection (Figure 2B, E). Additionally, when the images captured in the red and blue channels were merged, only red cancer cells in the tail region without any blue signals were observed (Figure 2C, F). However, in embryos that were injected with ultrabright fluorescent silica nanoparticles, there were blue dots in the tails, concentrated near and around the cancer cells at 3.5 h (Figure 3B, E). In the overlaid images captured from both red and blue channels, red HeLa cells and blue nanoparticles colocalized, seen as pink dots (Figure 3C, F). In those embryos that were injected solely with nanoparticles but not transplanted with HeLa cells, the blue fluorescent particles did not concentrate into any particular cells or areas, but distributed relatively evenly into the circulatory system of the embryos, highlighting blood vessels (Figure 4B, E). As expected, no specific red fluorescent signals were detected in these embryos despite some weak background fluorescent signals (Figure 4A, C, D, F).

This protocol was subsequently used to test different types of nanoparticles18,19,20. Colocalization of cancer cells with certain types of nanoparticles were observed as early as 30 min postinjection depending on the properties of the nanoparticle tested. By 120 min, there was >80% targeting of cancer cells by these nanoparticles in the tail region of the fish. However, for other nanoparticles, minimal targeting of cancer cells was observed, consistent with their lack of cancer-specific ligand. The detailed results and analysis are included in Peerzade et al. (see Figure 3 and Figure 4, Supplementary Figures S12-S16, and Supplementary Table S6)18. These results demonstrated differential targeting of nanoparticles to xenografted HeLa cells in zebrafish. Thus, using this protocol, one should be able to efficiently select nanoparticles based on their ability to recognize and target metastatic human cancer cells in vivo.

Figure 1
Figure 1: Protocol schematic for studying the ability of nanoparticles to target human cancer cells. Transparent Casper embryos were generated through breeding male and female adult fish. Fertilized embryos were collected in a Petri dish. At 48 hpf, RFP+ HeLa cells were injected into zebrafish embryos at the perivitelline cavity, leaving some age-matched embryos uninjected as controls. At 72 hpf, embryos with metastatic RFP+ HeLa cells were selected and split into two groups: (A) injected with vehicle (H2O) as control and (B) injected with nanoparticles suspended in H2O. The third group was age-matched embryos that were injected with nanoparticles alone (C). All three groups were imaged under a fluorescent microscope. The boxed area shown is where images were captured (see Figure 2-Figure 4). Scale bars for adult fish = 1 mm and for embryos = 500 µm. Please click here to view a larger version of this figure.

Figure 2
Figure 2: Zebrafish transplanted with metastatic HeLa cells without nanoparticles. Only red fluorescent HeLa cells were visible in the individual (A, D) or overlaid images of the red channel and blue channel (C, F). No specific blue fluorescent signals were detected in the embryo with vehicle injection control (B, E). Images in (A-C) show the fish tail region boxed as in Figure 1A. Images in (D-F) are enlarged views of the boxed areas in (A-C). Scale bars in (A-C) = 200 µm and in (D-F) = 100 µm. Please click here to view a larger version of this figure.

Figure 3
Figure 3: Colocalization of red fluorescent HeLa cells and blue fluorescent nanoparticles in zebrafish. The zebrafish tails were imaged at both low (A-C) and high (D-F) magnification in the red and blue channel. Red fluorescent signals revealed metastatic HeLa cells (A, D), whereas blue fluorescent signals showed the nanoparticles (B, E). The overlaid images from both red and blue channels (C, F) show colocalization of HeLa cells and nanoparticles. The images were taken after 3.5 h from injection with ultrabright silica nanoparticles. Images in (A-C) show the fish tail region as boxed in Figure 1B. Images in (D-F) are enlarged views of the boxed areas in (A-C). Scale bars in (A-C) = 100 μm and in (D-F) = 50 μm. Please click here to view a larger version of this figure.

Figure 4
Figure 4: Zebrafish injected with nanoparticles without human HeLa cells. Blue fluorescent nanoparticles were distributed into the circulatory system of the embryos in the individual (B, E) and overlaid images of the red and blue channel (C, F). No specific red fluorescence was visible at either low or high magnification (A, D) except some background fluorescence common to zebrafish embryos. Images in (A-C) show the fish tail region as boxed in Figure 1C. Images in (D-F) are enlarged views of the boxed areas in (A-C). Scale bars in (A-C) = 100 µm and in (D-F) = 50 µm. Please click here to view a larger version of this figure.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

The protocol described here utilizes the zebrafish as an in vivo system to test the ability of nanoparticles to recognize and target metastatic human cancer cells. Several factors can impact the successful execution of the experiments. First, embryos need to be fully developed at 48 hpf. The correct developmental stage of the embryos enables them to endure and survive the transplantation of human cancer cells. Embryos younger than 48 hpf have a significantly lower survival rate compared to older and more developed embryos. Second, cancer cells should be kept as healthy as possible by ensuring they are: 1) in the exponential growth phase21, 2) freshly harvested 30 min-1 h immediately before transplantation, and 3) kept warm at all times. Third, the needle must not be clogged. Pipette the HeLa cells up and down at least 20x before loading the cell mixture into the needle. Fourth, different types of needles must be used for transplantation of human cancer cells and injection of nanoparticles. The needle for human cell transplantation is relatively wide, with an angle to avoid cell clogging, whereas the needle for nanoparticle injection is sharp and thin. Fifth, the location of the injection differs. The location for transplantation of human cells is the perivitelline cavity, but for nanoparticle injection, the needle should be inserted behind the eye, where there are enriched capillaries. Finally, the skill of the individual who performs transplantation matters. An experienced individual can accurately inject HeLa cells into the perivitelline cavity space, while an inexperienced person often injects tumor cells into the yolk area where tumor cells barely spread into the fish body. Similarly, the embryos' survival rate is much higher when handled by an experienced individual, with at least 50% of embryos transplanted with cancer cells surviving.

Although zebrafish embryos are usually incubated at 28.5 °C, human cancer cells require higher temperatures to survive and migrate22,23. To allow the survival of both fish embryos and human cancer cells, the embryos transplanted with human cancer cells are incubated at 35.5 °C instead. Although it may be easier to deliver cancer cells into the yolk sac, they barely spread into the circulatory system. Therefore, it is critical to inject the cancer cells into the vascularized area under the perivitelline cavity to ensure intravasation and spread of cancer cells. Additionally, one must take care not to add too much or too concentrated MS222 when anesthetizing the embryos during injection and imaging. To aid in imaging and visualization of nanoparticles, the Casper zebrafish was chosen instead of AB fish. The Casper fish is a double mutant for Nacre and Roy that lacks melanocytes and iridophores, resulting in increased transparency compared to AB fish14. The transparency of the Casper zebrafish enables monitoring the spread of nanoparticles in circulation and the targeting of the nanoparticles to cancer cells. The challenge of this protocol is the relatively high mortality rate of the embryos if an unexperienced individual performs the transplantation of human cancer cells. Interestingly, the injection of nanoparticles slightly behind the eyes is relatively well tolerated. This is likely due to the use of thinner needles compared to the needles used for tumor cell transplantation. To avoid damaging human cancer cells, one must use needles with wide openings, but these can lead to damage of the embryos if handled inappropriately.

This protocol utilizes the Casper zebrafish to visualize targeting of metastatic cancer cells with functionalized nanoparticles in vivo. A major advantage of this assay is that it allows the researchers to perform real-time imaging over the course of zebrafish development to monitor the interaction of cancer cells with nanoparticles. In fact, due to its high fecundity and rapid development, the zebrafish allows the researcher to obtain results in just afew days18,19,20,24. Moreover, this assay also allows the elimination of toxic nanoparticles from further research if most embryos die after injection of a particular type of nanoparticle. Although the zebrafish is not a mammal, it facilitates the selection of a large number of nanoparticles in a rapid and economical manner, providing useful information for downstream studies in large animals and clinical testing. Taken together, the zebrafish is making an impact in nanomedicine and nanotechnology by helping select suitable nanoprobes for early detection and potential destruction of cancer cells through cancer-specific targeting.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

I.S. declares interest in NanoScience Solutions, LLC (recipient of STTR NIH R41AI142890 grant). All other authors declare no conflicts of interest.

Acknowledgments

The authors thank Ms. Kaylee Smith, Ms. Lauren Kwok, and Mr. Alexander Floru for proofreading the manuscript. H.F. acknowledges grant support from the NIH (CA134743 and CA215059), the American Cancer Society (RSG-17-204 01-TBG), and the St. Baldrick's Foundation. F.J.F.L. acknowledges a fellowship from Boston University Innovation Center-BUnano Cross-Disciplinary Training in Nanotechnology for Cancer (XTNC). I.S acknowledges NSF support (grant CBET 1605405) and NIH R41AI142890.

Materials

Name Company Catalog Number Comments
Agarose KSE scientific BMK-A1705
Borosilicate glass capillaries World Precision Instruments 1.0 mm O.D. x 0,78 mm
Computer and monitor ThinkCentre X000335
DMEM (Dulbecco's Modified Eagle's Medium) Corning 10-013-CV sold by Fisher
Fetal Bovine Serum Sigma-Aldrich F0926
Fish incubator VWR 35960-056
Hemocytometer Fishersci brand 02-671-51B
Magnetic stand World Precision Instruments M10
Microloader tip Eppendorf E5242956003 sold by Fisher
Micromanipulator Applied Scientific Instrumentation MMPI-3
Needle Puller Sutter instruments P-97
Olympus MVX-10 fluorescent microscope Olympus MVX-10
P200 tip Fishersci brand 07-200-293
PBS (Dulbecco's Phosphate-Buffered Salt Solution 1X) Corning 21-030-CV sold by Fisher
Petri dish Corning SB93102 sold by Fisher
Plastic pipette Fishersci brand 50-998-100
pLenti6.2_miRFP670 Addgene 13726
Pneumatic pico pump World Precision Instruments SYSPV820
Pronase Roche-Sigma-Fisher 50-100-3275 Roche product made by Sigma- sold by Fisher
Razor blade Fishersci brand 12-640
SZ51 dissection microscope Olympus SZ51
Tricaine methanesulfonate Western Chemicals NC0872873 sold by Fisher
Trypsin-EDTA Corning MT25053CI sold by Fisher
Tweezer Fishersci brand 12-000-122

DOWNLOAD MATERIALS LIST

References

  1. Dadwal, A., Baldi, A., Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artificial Cells, Nanomedicine, Biotechnology. 46, (Suppl 2), 295-305 (2018).
  2. Cho, K., Wang, X., Nie, S., Chen, Z. G., Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research. 14, (5), 1310-1316 (2008).
  3. Senapati, S., Mahanta, A. K., Kumar, S., Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Target Therapy. 3, 7 (2018).
  4. Chinen, A. B., et al. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chemal Reviews. 115, (19), 10530-10574 (2015).
  5. Palantavida, S., Guz, N. V., Woodworth, C. D., Sokolov, I. Ultrabright fluorescent mesoporous silica nanoparticles for prescreening of cervical cancer. Nanomedicine. 9, (8), 1255-1262 (2013).
  6. Singh, M., Murriel, C. L., Johnson, L. Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes. Cancer Research. 72, (11), 2695-2700 (2012).
  7. Sharkey, F. E., Fogh, J. Considerations in the use of nude mice for cancer research. Cancer Metastasis Reviews. 3, (4), 341-360 (1984).
  8. Vargo-Gogola, T., Rosen, J. M. Modelling breast cancer: one size does not fit all. Nature Reviews Cancer. 7, (9), 659-672 (2007).
  9. Minn, A. J., et al. Genes that mediate breast cancer metastasis to lung. Nature. 436, (7050), 518-524 (2005).
  10. Soares, K. C., et al. A preclinical murine model of hepatic metastases. Journal of Visualized Experiments. (91), e51677 (2014).
  11. Etchin, J., Kanki, J. P., Look, A. T. Zebrafish as a model for the study of human cancer. Methods in Cell Biology. 105, 309-337 (2011).
  12. Liu, S., Leach, S. D. Zebrafish models for cancer. Annual Reviews in Pathology. 6, 71-93 (2011).
  13. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Developmental Dynamics. 203, (3), 253-310 (1995).
  14. White, R. M., et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2, (2), 183-189 (2008).
  15. Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., Sin, Y. M. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Developmental and Comparative Immunology. 28, (1), 9-28 (2004).
  16. Westerfield, M. THE ZEBRAFISH BOOK. 5th edn, Univ. of Oregon Press. (2007).
  17. Anderson, N. M., et al. The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis. Leukemia. 30, (6), 1365-1374 (2016).
  18. Peerzade, S., et al. Ultrabright fluorescent silica nanoparticles for in vivo targeting of xenografted human tumors and cancer cells in zebrafish. Nanoscale. 11, (46), 22316-22327 (2019).
  19. Peng, B., et al. Ultrabright fluorescent cellulose acetate nanoparticles for imaging tumors through systemic and topical applications. Materials Today (Kidlington). 23, 16-25 (2019).
  20. Peng, B., et al. Data on ultrabright fluorescent cellulose acetate nanoparticles for imaging tumors through systemic and topical applications. Data in Brief. 22, 383-391 (2019).
  21. Masters, J. R., Stacey, G. N. Changing medium and passaging cell lines. Nature Protocols. 2, (9), 2276-2284 (2007).
  22. Rao, P. N., Engelberg, J. Hela Cells: Effects of Temperature on the Life Cycle. Science. 148, (3673), 1092-1094 (1965).
  23. Avdesh, A., et al. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. Journal of Visualized Experiments. (69), e4196 (2012).
  24. Spence, R., Gerlach, G., Lawrence, C., Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biological Reviews of the Cambridge Philosophical Society. 83, (1), 13-34 (2008).
This article has been published
Video Coming Soon
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Qin, X., Laroche, F. F. J., Peerzade, S. A. M. A., Lam, A., Sokolov, I., Feng, H. In Vivo Targeting of Xenografted Human Cancer Cells with Functionalized Fluorescent Silica Nanoparticles in Zebrafish. J. Vis. Exp. (159), e61187, doi:10.3791/61187 (2020).More

Qin, X., Laroche, F. F. J., Peerzade, S. A. M. A., Lam, A., Sokolov, I., Feng, H. In Vivo Targeting of Xenografted Human Cancer Cells with Functionalized Fluorescent Silica Nanoparticles in Zebrafish. J. Vis. Exp. (159), e61187, doi:10.3791/61187 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter