Summary

HeLa細胞におけるライブイメージングを用いたミトコンドリア膜電位およびスーパーオキシドレベルの蛍光ベースの定量

Published: May 12, 2023
doi:

Summary

この手法では、蛍光ベースのライブイメージングを使用して、HeLa細胞内のミトコンドリア膜電位とスーパーオキシドレベルを視覚化し、定量的に測定するための効果的なワークフローについて説明します。

Abstract

ミトコンドリアは、ATP合成 を介して エネルギー産生を制御することにより、代謝恒常性に不可欠な動的オルガネラです。細胞の代謝をサポートするために、さまざまなミトコンドリアの品質管理メカニズムが連携して、健康なミトコンドリアネットワークを維持します。そのような経路の1つはマイトファジーであり、PTEN誘導キナーゼ1(PINK1)と損傷したミトコンドリアのパーキンホスホユビキチン化は、オートファゴソームの隔離とその後のリソソーム融合 による 細胞からの除去を促進します。マイトファジーは細胞の恒常性にとって重要であり、パーキンの変異はパーキンソン病(PD)に関連しています。これらの発見により、ミトコンドリアの品質管理の分子メカニズムとダイナミクスを理解するために、ミトコンドリアの損傷と代謝回転の研究に大きな重点が置かれてきました。ここでは、生細胞イメージングを使用してHeLa細胞のミトコンドリアネットワークを視覚化し、ミトコンドリア脱共役剤であるカルボニルシアン化m-クロロフェニルヒドラゾン(CCCP)で処理した後のミトコンドリア膜電位とスーパーオキシドレベルを定量化しました。さらに、パーキン依存性マイトファジーを阻害するパーキンのPD結合変異(パーキンT240R)を発現させ、変異発現が野生型パーキンを発現する細胞と比較してミトコンドリアネットワークにどのように影響するかを決定しました。ここで概説するプロトコルは、ミトコンドリア膜電位とスーパーオキシドレベルを効果的に定量するための蛍光ベースのアプローチを使用した簡単なワークフローを説明しています。

Introduction

ミトコンドリアネットワークは、エネルギー生産1、自然免疫2,3、および細胞シグナル伝達4,5において重要な役割を果たす一連の相互接続された細胞小器官です。ミトコンドリアの調節不全は、パーキンソン病(PD)などの神経変性疾患と関連しています6,7。PDは、黒質のドーパミン作動性ニューロンに影響を与える進行性の神経変性疾患であり、世界中で約1,000万人が罹患しています8。PDは、損傷したミトコンドリアを選択的に除去する細胞の恒常性を維持するために必要なミトコンドリアの品質管理経路であるマイトファジーと遺伝的に関連しています9,10。研究により、1(FUNDC1)を介したマイトファジーを含むFUN14ドメイン、Bcl-2相互作用タンパク質3(BNIP3)促進マイトファジー、NIX依存性マイトファジー、および十分に特徴付けられたPTEN誘導キナーゼ1(PINK1)/パーキン調節マイトファジー10,11を含む複数の独立したマイトファジー経路が特定されています。PINK1(推定されるキナーゼ)とパーキン(E3ユビキチンリガーゼ)は連携して働き、損傷したミトコンドリアをリン酸ユビキチン化し、損傷した細胞小器官を飲み込み、リソソームと融合して分解を開始するオートファゴソームの形成を促進します12,13,14,15,16。パーキンの変異は、ドーパミン作動性ニューロンの喪失を介した神経変性などのPD結合表現型と関連しています17,18

ここでは、子宮頸がん由来の不死化細胞であるHeLa細胞を使用して、ミトコンドリアネットワークの健康を維持する上でのパーキンの役割を調査するプロトコルについて説明します。HeLa細胞はごくわずかなレベルの内因性パーキンを発現するため、外因性パーキン発現が必要です19。ミトコンドリアネットワークの健康におけるパーキンの役割を研究するために、HeLa細胞を野生型パーキン(パーキンWT)、パーキン変異体(パーキンT240R)、または空のコントロールベクターのいずれかでトランスフェクトします。パーキンT240Rは、パーキンE3リガーゼ活性に影響を及ぼす常染色体劣性若年性パーキンソニズム変異であり、マイトファジー経路20の効率を著しく低下させる。HeLa細胞は、ミトコンドリア脱共役剤であるカルボニルシアン化物m-クロロフェニルヒドラゾン(CCCP)の軽度(5 μM)または重度(20 μM)濃度にさらされます。高濃度のCCCPによる処理は、HeLaおよびCOS-7細胞などの様々な細胞株においてパーキン媒介マイトファジーを誘導するために日常的に使用されている212223

治療後、プロトコルは、現在利用可能な2つのミトコンドリア標的蛍光色素を使用したミトコンドリアネットワークのライブイメージングを使用します。テトラメチルローダミン、エチルエステル、過塩素酸塩(TMRE)は、ミトコンドリア膜電位24に基づいて蛍光を発するカチオン色素であり、MitoSOXは、蛍光強度がスーパーオキシド濃度25の関数であるミトコンドリアスーパーオキシドインジケーターです。最後に、概説したプロトコルは、蛍光ベースの定量とシンプルなワークフローを使用して、ユーザーのバイアスの範囲を最小限に抑えながら、ミトコンドリア膜電位とスーパーオキシドレベルを効果的に定量します。このプロトコルは、HeLa細胞のミトコンドリア機能を研究するために設計されましたが、ミトコンドリアネットワークの健全性を定量的に特徴付けるために、追加の細胞株および初代細胞タイプに適合させることができます。

Protocol

1. 生体試料の調製 注意: バイオセーフティキャビネットで滅菌技術を使用して、次の手順を実行します。キャビネットの表面とすべての材料に70%エタノールをスプレーします。 HeLa細胞の培養とトランスフェクション10%ウシ胎児血清および1%L-グルタミン溶液を添加した4.5 g/Lグルコースを含むダルベッコ改変イーグル培地(DMEM)で30,000個のHeLa細胞?…

Representative Results

このプロトコルでは、蛍光ベースの定量を使用して、CCCP処理後のミトコンドリアネットワークの膜電位とスーパーオキシドレベルを測定しました(図1)。このワークフローでは、子宮頸がん由来の不死化細胞株であるHeLa細胞を使用しました。HeLa細胞は、ミトコンドリア生物学の研究に日常的に使用されており、比較的平坦であるため、顕微鏡を使用してミトコンドリア?…

Discussion

ここで概説するワークフローは、蛍光ベースのイメージングを用いて、ミトコンドリア膜電位およびスーパーオキシドレベルを堅牢かつ再現性よく定量するために使用することができる30。これらの実験を設計する際に考慮すべき重要な技術的制限があります。HeLa細胞を、空のYFPベクター、YFP-パーキンWT、またはYFP-パーキンT240Rでトランスフェクトした。空…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この原稿に対する思慮深いフィードバックを提供してくれたEvansラボのメンバーに感謝します。この研究は、デュークホワイトヘッド奨学生、デューク科学技術奨学生、およびハワードヒューズ医学研究所(HHMI)ハンナグレイフェローシップによってサポートされています。 図1A は BioRender.com を用いて作製した。

Materials

Chemicals, Peptides, and Recombinant Proteins
CCCP (carbonyl cyanide m-chlorophenyl hydrazone)  Sigma-Aldrich C2759
DMEM (1x) with 4.5 g/L glucose Gibco 11-965-084
DMSO, Anhydrous ThermoFisher Scientific D12345
Fetal Bovine Serum Hyclone SH3007103
FuGENE 6 (Tranfection Reagent) Promega E2691
GlutaMAX 100x (L-Glutamine Solution)  Gibco  35-050-061
Hoescht 33342 ThermoFisher Scientific 62249
MitoSOX  Red  ThermoFisher Scientific M36008
MitoTracker Deep Red ThermoFisher Scientific M7514
Opti-MEM (Redued Serum media) ThermoFisher scientific 31985070
Tetramethylrhodamine, Ethyl Ester, Perchlorate (TMRE)  ThermoFisher Scientific T669
Experimental models: Organisms/Strains
HeLa-M (Homo sapiens) A. Peden (Cambridge Institute for Medical Research) N/A
Recombinant DNA
EYFP Empty Vector N/A N/A
YFP-Parkin T240R This Paper Generated by site-directed mutagenesis from YFP-Parkin
YFP-Parkin WT Addgene; PMID:19029340 RRID:Addgene_23955
Software and Algorithms
Adobe Illustrator Adobe Inc. https://www.adobe.com/products/illustrator (Schindelin, 2012)
Excel (Spreadsheet Software) Microsoft Office  https://www.microsoft.com/en-us/microsoft-365/excel
ImageJ https://imagej.net/software/fiji/
Leica Application Suite (LAS X) Leica https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/
Microsoft Excel Microsoft Office https://www.microsoft.com/excel
Prism9 (Statistical Analysis Software) GraphPad Software https://www.graphpad.com
Other
35 mm Dish, No. 1.5 Coverslip, 20 mm Glass Diameter, Uncoated MatTek P35G-1.5-20-C
Cage Incubator (Environmental Chamber) Okolab https://www.oko-lab.com/cage-incubator
DMiL Inverted Microscope Leica N/A
LIGHTNING Deconvolution Software Leica N/A
STELLARIS 8 confocal microscope Leica N/A

References

  1. Spinelli, J. B., Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology. 20 (7), 745-754 (2018).
  2. West, A. P., Shadel, G. S., Ghosh, S. Mitochondria in innate immune responses. Nature Reviews. Immunology. 11 (6), 389-402 (2011).
  3. Seth, R. B., Sun, L., Ea, C. K., Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 122 (5), 669-682 (2005).
  4. Tait, S. W. G., Green, D. R. Mitochondria and cell signalling. Journal of Cell Science. 125, 807-815 (2012).
  5. Antico Arciuch, V. G., Elguero, M. E., Poderoso, J. J., Carreras, M. C. Mitochondrial regulation of cell cycle and proliferation. Antioxidants and Redox Signaling. 16 (10), 1150-1180 (2012).
  6. Grunewald, A., Kumar, K. R., Sue, C. M. New insights into the complex role of mitochondria in Parkinson’s disease. Progress in Neurobiology. 177, 73-93 (2019).
  7. Borsche, M., Pereira, S. L., Klein, C., Grunewald, A. Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects. Journal of Parkinson’s Disease. 11 (1), 45-60 (2021).
  8. Ou, Z., et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Frontiers in Public Health. 9, 776847 (2021).
  9. Martinez-Vicente, M. Neuronal mitophagy in neurodegenerative diseases. Frontiers in Molecular Neuroscience. 10, 64 (2017).
  10. Youle, R. J., Narendra, D. P. Mechanisms of mitophagy. Nature Reviews. Molecular Cell Biology. 12 (1), 9-14 (2011).
  11. Villa, E., Marchetti, S., Ricci, J. E. No Parkin zone: mitophagy without Parkin. Trends in Cell Biology. 28 (11), 882-895 (2018).
  12. Geisler, S., et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy. 6 (7), 871-878 (2010).
  13. Kane, L. A., et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. The Journal of Cell Biology. 205 (2), 143-153 (2014).
  14. Koyano, F., et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 510 (7503), 162-166 (2014).
  15. Ordureau, A., et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proceedings of the National Academy of Sciences. 112 (21), 6637-6642 (2015).
  16. Ordureau, A., et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Molecular Cell. 56 (3), 360-375 (2014).
  17. Kitada, T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392 (6676), 605-608 (1998).
  18. Valente, E. M., et al. PARK6 is a common cause of familial parkinsonism. Neurological Sciences. 23, S117-S118 (2002).
  19. Matsuda, N., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. The Journal of Cell Biology. 189 (2), 211-221 (2010).
  20. Sriram, S. R., et al. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Human Molecular Genetics. 14 (17), 2571-2586 (2005).
  21. Vives-Bauza, C., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences. 107 (1), 378-383 (2010).
  22. Wong, Y. C., Holzbaur, E. L. F. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proceedings of the National Academy of Sciences. 111 (42), E4439-E4448 (2014).
  23. Bertolin, G., et al. Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-beta hydroxysteroid dehydrogenase type 10. Cell Death and Differentiation. 22 (10), 1563-1576 (2015).
  24. Crowley, L. C., Christensen, M. E., Waterhouse, N. J. Measuring mitochondrial transmembrane potential by TMRE staining. Cold Spring Harbor Protocols. 2016 (12), (2016).
  25. Kuznetsov, A. V., et al. Mitochondrial ROS production under cellular stress: comparison of different detection methods. Analytical and Bioanalytical Chemistry. 400 (8), 2383-2390 (2011).
  26. Moore, A. S., Holzbaur, E. L. F. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proceedings of the National Academy of Sciences. 113 (24), E3349-E3358 (2016).
  27. Evans, C. S., Holzbaur, E. L. F. Degradation of engulfed mitochondria is rate-limiting in Optineurin-mediated mitophagy in neurons. eLife. 9, e50260 (2020).
  28. Jacobsen, L. B., Calvin, S. A., Colvin, K. E., Wright, M. FuGENE 6 Transfection Reagent: the gentle power. Methods. 33 (2), 104-112 (2004).
  29. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  30. Mitra, K., Lippincott-Schwartz, J. Analysis of mitochondrial dynamics and functions using imaging approaches. Current Protocols in Cell Biology. , 1-21 (2010).
  31. Lin, H. C., Liu, S. Y., Lai, H. S., Lai, I. R. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock. 39 (3), 304-310 (2013).
  32. Kholmukhamedov, A., Schwartz, J. M., Lemasters, J. J. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats: mitotracker probes and mitochondrial membrane potential. Shock. 39 (6), 543 (2013).
  33. Thorn, K. Genetically encoded fluorescent tags. Molecular Biology of the Cell. 28 (7), 848-857 (2017).
  34. Pavel, M., et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nature Communications. 9 (1), 2961 (2018).
  35. Rossignol, R., et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Research. 64 (3), 985-993 (2004).
  36. Schornack, P. A., Gillies, R. J. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia. 5 (2), 135-145 (2003).
  37. Christensen, M. E., Jansen, E. S., Sanchez, W., Waterhouse, N. J. Flow cytometry based assays for the measurement of apoptosis-associated mitochondrial membrane depolarisation and cytochrome c release. Methods. 61 (2), 138-145 (2013).
  38. Muller, B., et al. Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Scientific Reports. 9 (1), 16778 (2019).
  39. Connolly, N. M. C., et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation. 25 (3), 542-572 (2018).
  40. Demine, S., Renard, P., Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells. 8 (8), 795 (2019).
  41. Narendra, D., Tanaka, A., Suen, D. F., Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology. 183 (5), 795-803 (2008).
  42. Kwak, S. H., Park, K. S., Lee, K. U., Lee, H. K. Mitochondrial metabolism and diabetes. Journal of Diabetes Investigation. 1 (5), 161-169 (2010).
  43. Reddy, P. H. Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectrums. 14 (8), 8-13 (2009).
  44. Wang, W., Zhao, F., Ma, X., Perry, G., Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Molecular Neurodegeneration. 15 (1), 30 (2020).
  45. Baloyannis, S. J. Mitochondrial alterations in Alzheimer’s disease. Journal of Alzheimer’s Disease. 9 (2), 119-126 (2006).
  46. Wallace, D. C. Mitochondria and cancer. Nature Reviews. Cancer. 12 (10), 685-698 (2012).
  47. Middleton, P., Vergis, N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therapeutic Advances in Gastroenterology. 14, 17562848211031394 (2021).
check_url/65304?article_type=t

Play Video

Cite This Article
Fazli, M., Evans, C. S. Fluorescence-Based Quantification of Mitochondrial Membrane Potential and Superoxide Levels Using Live Imaging in HeLa Cells. J. Vis. Exp. (195), e65304, doi:10.3791/65304 (2023).

View Video