Summary

Cuantificación basada en fluorescencia del potencial de membrana mitocondrial y los niveles de superóxido utilizando imágenes en vivo en células HeLa

Published: May 12, 2023
doi:

Summary

Esta técnica describe un flujo de trabajo efectivo para visualizar y medir cuantitativamente el potencial de la membrana mitocondrial y los niveles de superóxido dentro de las células HeLa utilizando imágenes en vivo basadas en fluorescencia.

Abstract

Las mitocondrias son orgánulos dinámicos críticos para la homeostasis metabólica mediante el control de la producción de energía a través de la síntesis de ATP. Para apoyar el metabolismo celular, varios mecanismos de control de calidad mitocondrial cooperan para mantener una red mitocondrial saludable. Una de estas vías es la mitofagia, donde la quinasa 1 inducida por PTEN (PINK1) y la fosfoubiquitinación Parkin de las mitocondrias dañadas facilitan el secuestro de autofagosomas y la posterior eliminación de la célula a través de la fusión de lisosomas. La mitofagia es importante para la homeostasis celular, y las mutaciones en Parkin están relacionadas con la enfermedad de Parkinson (EP). Debido a estos hallazgos, ha habido un énfasis significativo en la investigación del daño mitocondrial y el recambio para comprender los mecanismos moleculares y la dinámica del control de calidad mitocondrial. Aquí, se utilizaron imágenes de células vivas para visualizar la red mitocondrial de células HeLa, para cuantificar el potencial de membrana mitocondrial y los niveles de superóxido después del tratamiento con cianuro de carbonilo m-clorofenil hidrazona (CCCP), un agente de desacoplamiento mitocondrial. Además, se expresó una mutación ligada a la PD de Parkin (ParkinT240R) que inhibe la mitofagia dependiente de Parkin para determinar cómo la expresión mutante afecta la red mitocondrial en comparación con las células que expresan Parkin de tipo salvaje. El protocolo descrito aquí describe un flujo de trabajo simple que utiliza enfoques basados en fluorescencia para cuantificar el potencial de la membrana mitocondrial y los niveles de superóxido de manera efectiva.

Introduction

La red mitocondrial es una serie de orgánulos interconectados que desempeñan un papel crucial en la producción de energía1, la inmunidad innata 2,3 y la señalización celular 4,5. La desregulación mitocondrial se ha asociado con enfermedades neurodegenerativas como la enfermedad de Parkinson (EP)6,7. La EP es un trastorno neurodegenerativo progresivo que afecta a las neuronas dopaminérgicas de la sustancia negra y que afecta a casi 10 millones de personas en todo el mundo8. La EP se ha relacionado genéticamente con la mitofagia, una vía de control de calidad mitocondrial necesaria para mantener la homeostasis celular que elimina selectivamente las mitocondrias dañadas 9,10. Los estudios han identificado múltiples vías de mitofagia independientes, incluida la mitofagia mediada por el dominio FUN14 que contiene 1 (FUNDC1), la mitofagia facilitada por la proteína 3 que interactúa con Bcl-2 (BNIP3), la mitofagia dependiente de NIX y la bien caracterizada quinasa 1 inducida por PTEN (PINK1) / mitofagia regulada por Parkin10,11. PINK1 (una quinasa putativa) y Parkin (una ubiquitina ligasa E3) trabajan en conjunto para fosfo-ubiquitinar las mitocondrias dañadas, lo que impulsa la formación de autofagosomas que engullen el orgánulo dañado y se fusionan con los lisosomas para iniciar la degradación 12,13,14,15,16. Las mutaciones en Parkin se han asociado con fenotipos ligados a la EP, como la neurodegeneración a través de la pérdida de neuronas dopaminérgicas17,18.

Aquí, se describe un protocolo en el que las células HeLa, células inmortalizadas utilizadas rutinariamente derivadas del cáncer cervical, se utilizan para investigar el papel de Parkin en el mantenimiento de la salud de la red mitocondrial. Las células HeLa expresan niveles insignificantes de Parkin endógeno y, por lo tanto, requieren expresión exógena de Parkin19. Para estudiar el papel de Parkin en la salud de la red mitocondrial, las células HeLa se transectan con Parkin de tipo salvaje (ParkinWT), un mutante Parkin (ParkinT240R) o un vector de control vacío. ParkinT240R es una mutación de parkinsonismo juvenil autosómico recesivo que afecta a la actividad de la ligasa Parkin E3, reduciendo significativamente la eficiencia de la vía de mitofagia20. Las células HeLa están sujetas a concentraciones leves (5 μM) o graves (20 μM) de cianuro de carbonilo m-clorofenil hidrazona (CCCP), un agente de desacoplamiento mitocondrial. El tratamiento con concentraciones severas de CCCP se utiliza rutinariamente para inducir mitofagia mediada por Parkin en varias líneas celulares, como las células HeLa y COS-721,22,23.

Después del tratamiento, el protocolo emplea imágenes en vivo de la red mitocondrial utilizando dos tintes fluorescentes dirigidos a mitocondriales actualmente disponibles. La tetrametilrodamina, éster etílico, perclorato (TMRE) es un colorante catiónico que emite fluorescencia en función del potencial de membrana mitocondrial24, mientras que MitoSOX es un indicador de superóxido mitocondrial donde la intensidad de fluorescencia es una función de la concentración de superóxido25. Finalmente, el protocolo descrito utiliza una cuantificación basada en fluorescencia y un flujo de trabajo simple para cuantificar de manera efectiva el potencial de membrana mitocondrial y los niveles de superóxido con un alcance mínimo para el sesgo del usuario. Aunque este protocolo fue diseñado para estudiar la función mitocondrial en células HeLa, se puede adaptar para líneas celulares adicionales y tipos de células primarias para caracterizar cuantitativamente la salud de la red mitocondrial.

Protocol

1. Preparación de muestras biológicas NOTA: Realice los siguientes pasos utilizando una técnica estéril en un gabinete de bioseguridad. Rocíe la superficie del gabinete y todos los materiales con etanol al 70%. Cultivo y transfección de células HeLaCultive 30.000 células HeLa en el medio de águila modificado de Dulbecco (DMEM) que contiene 4,5 g/L de glucosa suplementado con 10% de suero bovino fetal y 1% de solución de L-glutamina (HeLa media; ver …

Representative Results

En este protocolo, se utilizó la cuantificación basada en fluorescencia para medir el potencial de membrana y los niveles de superóxido de la red mitocondrial después del tratamiento con CCCP (Figura 1). Este flujo de trabajo utilizó células HeLa, una línea celular inmortalizada derivada del cáncer cervical. Las células HeLa se utilizan rutinariamente para estudiar la biología mitocondrial y son relativamente planas, lo que facilita la visualización de la red mitocondrial mediante…

Discussion

El flujo de trabajo descrito aquí se puede utilizar para cuantificar el potencial de la membrana mitocondrial y los niveles de superóxido de forma robusta y reproducible utilizando imágenes basadas en fluorescencia30. Existen importantes limitaciones técnicas a considerar al diseñar estos experimentos. Las células HeLa se transfectaron con un vector YFP vacío, YFP-ParkinWT o YFP-ParkinT240R. El vector YFP vacío se utilizó como control para confirmar que los hallazgos…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Agradecemos a los miembros del laboratorio de Evans por sus comentarios reflexivos sobre este manuscrito. Este trabajo cuenta con el apoyo de Duke Whitehead Scholars, Duke Science and Technology Scholars y Howard Hughes Medical Institute (HHMI) Hanna Gray Fellowship. La Figura 1A se realizó utilizando BioRender.com.

Materials

Chemicals, Peptides, and Recombinant Proteins
CCCP (carbonyl cyanide m-chlorophenyl hydrazone)  Sigma-Aldrich C2759
DMEM (1x) with 4.5 g/L glucose Gibco 11-965-084
DMSO, Anhydrous ThermoFisher Scientific D12345
Fetal Bovine Serum Hyclone SH3007103
FuGENE 6 (Tranfection Reagent) Promega E2691
GlutaMAX 100x (L-Glutamine Solution)  Gibco  35-050-061
Hoescht 33342 ThermoFisher Scientific 62249
MitoSOX  Red  ThermoFisher Scientific M36008
MitoTracker Deep Red ThermoFisher Scientific M7514
Opti-MEM (Redued Serum media) ThermoFisher scientific 31985070
Tetramethylrhodamine, Ethyl Ester, Perchlorate (TMRE)  ThermoFisher Scientific T669
Experimental models: Organisms/Strains
HeLa-M (Homo sapiens) A. Peden (Cambridge Institute for Medical Research) N/A
Recombinant DNA
EYFP Empty Vector N/A N/A
YFP-Parkin T240R This Paper Generated by site-directed mutagenesis from YFP-Parkin
YFP-Parkin WT Addgene; PMID:19029340 RRID:Addgene_23955
Software and Algorithms
Adobe Illustrator Adobe Inc. https://www.adobe.com/products/illustrator (Schindelin, 2012)
Excel (Spreadsheet Software) Microsoft Office  https://www.microsoft.com/en-us/microsoft-365/excel
ImageJ https://imagej.net/software/fiji/
Leica Application Suite (LAS X) Leica https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/
Microsoft Excel Microsoft Office https://www.microsoft.com/excel
Prism9 (Statistical Analysis Software) GraphPad Software https://www.graphpad.com
Other
35 mm Dish, No. 1.5 Coverslip, 20 mm Glass Diameter, Uncoated MatTek P35G-1.5-20-C
Cage Incubator (Environmental Chamber) Okolab https://www.oko-lab.com/cage-incubator
DMiL Inverted Microscope Leica N/A
LIGHTNING Deconvolution Software Leica N/A
STELLARIS 8 confocal microscope Leica N/A

References

  1. Spinelli, J. B., Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology. 20 (7), 745-754 (2018).
  2. West, A. P., Shadel, G. S., Ghosh, S. Mitochondria in innate immune responses. Nature Reviews. Immunology. 11 (6), 389-402 (2011).
  3. Seth, R. B., Sun, L., Ea, C. K., Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 122 (5), 669-682 (2005).
  4. Tait, S. W. G., Green, D. R. Mitochondria and cell signalling. Journal of Cell Science. 125, 807-815 (2012).
  5. Antico Arciuch, V. G., Elguero, M. E., Poderoso, J. J., Carreras, M. C. Mitochondrial regulation of cell cycle and proliferation. Antioxidants and Redox Signaling. 16 (10), 1150-1180 (2012).
  6. Grunewald, A., Kumar, K. R., Sue, C. M. New insights into the complex role of mitochondria in Parkinson’s disease. Progress in Neurobiology. 177, 73-93 (2019).
  7. Borsche, M., Pereira, S. L., Klein, C., Grunewald, A. Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects. Journal of Parkinson’s Disease. 11 (1), 45-60 (2021).
  8. Ou, Z., et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Frontiers in Public Health. 9, 776847 (2021).
  9. Martinez-Vicente, M. Neuronal mitophagy in neurodegenerative diseases. Frontiers in Molecular Neuroscience. 10, 64 (2017).
  10. Youle, R. J., Narendra, D. P. Mechanisms of mitophagy. Nature Reviews. Molecular Cell Biology. 12 (1), 9-14 (2011).
  11. Villa, E., Marchetti, S., Ricci, J. E. No Parkin zone: mitophagy without Parkin. Trends in Cell Biology. 28 (11), 882-895 (2018).
  12. Geisler, S., et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy. 6 (7), 871-878 (2010).
  13. Kane, L. A., et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. The Journal of Cell Biology. 205 (2), 143-153 (2014).
  14. Koyano, F., et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 510 (7503), 162-166 (2014).
  15. Ordureau, A., et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proceedings of the National Academy of Sciences. 112 (21), 6637-6642 (2015).
  16. Ordureau, A., et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Molecular Cell. 56 (3), 360-375 (2014).
  17. Kitada, T., et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 392 (6676), 605-608 (1998).
  18. Valente, E. M., et al. PARK6 is a common cause of familial parkinsonism. Neurological Sciences. 23, S117-S118 (2002).
  19. Matsuda, N., et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. The Journal of Cell Biology. 189 (2), 211-221 (2010).
  20. Sriram, S. R., et al. Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Human Molecular Genetics. 14 (17), 2571-2586 (2005).
  21. Vives-Bauza, C., et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences. 107 (1), 378-383 (2010).
  22. Wong, Y. C., Holzbaur, E. L. F. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proceedings of the National Academy of Sciences. 111 (42), E4439-E4448 (2014).
  23. Bertolin, G., et al. Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-beta hydroxysteroid dehydrogenase type 10. Cell Death and Differentiation. 22 (10), 1563-1576 (2015).
  24. Crowley, L. C., Christensen, M. E., Waterhouse, N. J. Measuring mitochondrial transmembrane potential by TMRE staining. Cold Spring Harbor Protocols. 2016 (12), (2016).
  25. Kuznetsov, A. V., et al. Mitochondrial ROS production under cellular stress: comparison of different detection methods. Analytical and Bioanalytical Chemistry. 400 (8), 2383-2390 (2011).
  26. Moore, A. S., Holzbaur, E. L. F. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proceedings of the National Academy of Sciences. 113 (24), E3349-E3358 (2016).
  27. Evans, C. S., Holzbaur, E. L. F. Degradation of engulfed mitochondria is rate-limiting in Optineurin-mediated mitophagy in neurons. eLife. 9, e50260 (2020).
  28. Jacobsen, L. B., Calvin, S. A., Colvin, K. E., Wright, M. FuGENE 6 Transfection Reagent: the gentle power. Methods. 33 (2), 104-112 (2004).
  29. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  30. Mitra, K., Lippincott-Schwartz, J. Analysis of mitochondrial dynamics and functions using imaging approaches. Current Protocols in Cell Biology. , 1-21 (2010).
  31. Lin, H. C., Liu, S. Y., Lai, H. S., Lai, I. R. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock. 39 (3), 304-310 (2013).
  32. Kholmukhamedov, A., Schwartz, J. M., Lemasters, J. J. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats: mitotracker probes and mitochondrial membrane potential. Shock. 39 (6), 543 (2013).
  33. Thorn, K. Genetically encoded fluorescent tags. Molecular Biology of the Cell. 28 (7), 848-857 (2017).
  34. Pavel, M., et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nature Communications. 9 (1), 2961 (2018).
  35. Rossignol, R., et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Research. 64 (3), 985-993 (2004).
  36. Schornack, P. A., Gillies, R. J. Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia. 5 (2), 135-145 (2003).
  37. Christensen, M. E., Jansen, E. S., Sanchez, W., Waterhouse, N. J. Flow cytometry based assays for the measurement of apoptosis-associated mitochondrial membrane depolarisation and cytochrome c release. Methods. 61 (2), 138-145 (2013).
  38. Muller, B., et al. Application of extracellular flux analysis for determining mitochondrial function in mammalian oocytes and early embryos. Scientific Reports. 9 (1), 16778 (2019).
  39. Connolly, N. M. C., et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation. 25 (3), 542-572 (2018).
  40. Demine, S., Renard, P., Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells. 8 (8), 795 (2019).
  41. Narendra, D., Tanaka, A., Suen, D. F., Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology. 183 (5), 795-803 (2008).
  42. Kwak, S. H., Park, K. S., Lee, K. U., Lee, H. K. Mitochondrial metabolism and diabetes. Journal of Diabetes Investigation. 1 (5), 161-169 (2010).
  43. Reddy, P. H. Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectrums. 14 (8), 8-13 (2009).
  44. Wang, W., Zhao, F., Ma, X., Perry, G., Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Molecular Neurodegeneration. 15 (1), 30 (2020).
  45. Baloyannis, S. J. Mitochondrial alterations in Alzheimer’s disease. Journal of Alzheimer’s Disease. 9 (2), 119-126 (2006).
  46. Wallace, D. C. Mitochondria and cancer. Nature Reviews. Cancer. 12 (10), 685-698 (2012).
  47. Middleton, P., Vergis, N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therapeutic Advances in Gastroenterology. 14, 17562848211031394 (2021).
check_url/65304?article_type=t

Play Video

Cite This Article
Fazli, M., Evans, C. S. Fluorescence-Based Quantification of Mitochondrial Membrane Potential and Superoxide Levels Using Live Imaging in HeLa Cells. J. Vis. Exp. (195), e65304, doi:10.3791/65304 (2023).

View Video