After a large-single-celled zygote is produced via fertilization, the process of cleavage occurs while zygotes travel through the uterine tube. Cleavage is a mitotic cell division that does not result in growth. With each round of successive cell division, daughter cells get increasingly smaller.
At the beginning of embryogenesis, maternal mRNAs control development. However, by the eight-cell stage of cleavage, embryonic genes become activated in a process called zygotic genome activation (ZGA). As a result, maternal mRNAs get degraded, and ZGA causes a transition from maternal to zygotic genetic control of developing an embryo. Although maternal mRNAs get degraded, previously translated proteins may remain in the embryo through later stages of development.
Cleavage patterns vary between organisms depending on the presence and distribution of egg yolk amongst other factors. For example, mammals have a holoblastic rotational cleavage pattern. They are holoblastic because they have sparse, but evenly distributed yolk and therefore end up with a cleavage furrow that extends through the entire embryo as opposed to being meroblastic where the cleavage furrow does not extend through the yolk-dense portion of the cytoplasm.
At the onset of cleavage, rotational cleavage begins when the zygote first divides to form two smaller daughter cells called blastomeres. During this first cleavage event, division occurs in an austral fashion. The two daughter blastomeres then go through mitosis to each form two new blastomeres. During this second cleavage event, one daughter blastomere cleaves in an austral manner while the second cleaves equatorially. This pattern continues so that the resultant blastomeres end up being smaller than their respective parent cells.
At the eight-blastomere stage, compaction starts to occur—blastomeres tightly push against each other and appear to be one cell where individual cells are indistinguishable from one another. To stabilize the tightly packed blastomeres, tight junctions are formed among the exterior blastomeres while the interior blastomeres form gap junctions that allow the movement of ions and small molecules in between cells. E-cadherin, a calcium-dependent adhesion molecule, helps to further adhere blastomeres to each other.
Once there are approximately thirty-two blastomeres, the zygote becomes a morula. Morula formation marks the end of cleavage. The morula then becomes a blastula that goes through further differentiation during the subsequent stages of development.
Ajduk, Anna, and Magdalena Zernicka-Goetz. “Polarity and Cell Division Orientation in the Cleavage Embryo: From Worm to Human.” Molecular Human Reproduction 22, no. 10 (October 2016): 691–703. [Source]
Cockburn, Katie, and Janet Rossant. “Making the Blastocyst: Lessons from the Mouse.” The Journal of Clinical Investigation 120, no. 4 (April 2010): 995–1003. [Source]
De Vries, Wilhelmine N., Alexei V. Evsikov, Bryce E. Haac, Karen S. Fancher, Andrea E. Holbrook, Rolf Kemler, Davor Solter, and Barbara B. Knowles. “Maternal Beta-Catenin and E-Cadherin in Mouse Development.” Development (Cambridge, England) 131, no. 18 (September 2004): 4435–45. [Source]