Summary

的神经植体培养<em>非洲爪蟾</em

Published: October 15, 2012
doi:

Summary

培养神经外植体解剖<em>非洲爪蟾</em表达荧光融合蛋白的胚胎,使成像的生长锥细胞骨架的动态。

Abstract

轴突引导的复杂过程,主要是由,这是动态能动结构的尖端处的生长的轴突生长锥。在轴突生长,生长锥必须整合多种来源的指导提示信息,调节细胞的骨架,以推动生长锥和准确定位找到它的具体目标1。这种整合发生在细胞骨架的水平如何,仍是新兴的,在生长锥细胞骨架蛋白和效应动力学检查可以让这些机制的阐明。 非洲爪蟾生长锥足够大(直径10-30微米)进行高的高分辨率实时成像细胞骨架的动态( 2-4),很容易分离和操作在实验室设置比其他脊椎动物。青蛙是一个典型的模型系统发育神经生物学研究,以及重要的早期洞察生长锥话筒最初发现使用该系统5-7 rotubule动态。在此方法中8,鸡蛋收集受精卵在体外 ,注入与RNA编码荧光标记的细胞骨架的融合蛋白或其他结构,操纵基因的表达,然后使其发展到神经管阶段。神经管分离解剖,然后进行培养,和不敷神经突起生长锥成像。在这篇文章中,我们将介绍如何执行此方法,我们的目标,就是要培养非洲爪蟾生长锥为后续的高清晰度图像分析。虽然我们提供+ TIP融合蛋白EB1-GFP的例子中,此方法可应用于任意数量的蛋白质生长锥内澄清他们的行为。

Protocol

注:我们描述的前两部分只在简单的步骤,优良的协议的详细信息已在其他地方发表,重点更具体步骤( 如 8-12)。此外,一般的工作与非洲爪蟾脊髓神经元在活细胞培养的协议已经发表在了详细的方法第8条。我们强烈建议审查该文章的这个视频作​​为一种补充,虽然在这里我们提供足够的信息来成功地执行和故障诊断神经管的解剖和电镀协议在第3步中。 <p cl…

Discussion

非洲爪蟾神经外植体发出神经突起,在一个非常强大的方式24小时后电镀层粘连蛋白/聚赖氨酸基板上,如果条件合适的。该基板上,生长锥高度运动,并可以实现轴突长度可达1毫米,在所有方向上从外植体向外延伸,虽然典型的长度为100微米或以上。如果神经突起不生长出来,有这种情况的原因是这种情况的数量是有限的。一种可能性是,神经外植体没有正确坚持的菜。确保不破坏附件?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢鲍勃·弗里曼为培训和克氏针实验室的使用的青蛙设施,凡向量子实验室的支持。我们感谢哈佛医学院的尼康影像中心寻求帮助,在光学显微镜图1中的图像。这项工作是由以下内容:NRSA美国国立卫生研究院的奖学金和NIH K99奖学金拉尔,基础科学伙伴关系的资金( https://bsp.med.harvard.edu/ )AEF和NIH RO1 NS035909 DVV

Materials

Name of Reagent Company Catalogue Number
Chorionic Gonadotropin Argent Chemical Laboratories C-HCG-ON-10
Cysteine Sigma-Aldrich 52-90-4
mMessage mMachine kit Ambion AM1340
Capillary Borosil Needles 1.2 mm (OD) x 0.9 mm (ID) FHC 30-31-0
Ficoll Sigma F2637
Dumont #5 Biologie Inox Forceps Fine Science Tools 11252-20
Collagenase  Sigma-Aldrich  9001-12-1
Mattek dishes Mat Tek Corporation P35G-1.5-14-C
L-15 Invitrogen 21083-027
Poly-l-lysine Sigma P-1399
Laminin Sigma L2020
NT3 Sigma N1905
BDNF Sigma B3795

References

  1. Lowery, L. A., Van Vactor, D. The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10, 332-343 (2009).
  2. Buck, K. B., Zheng, J. Q. Growth cone turning induced by direct local modification of microtubule dynamics. J. Neurosci. 22, 9358-9367 (2002).
  3. Lee, H. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron. 42, 913-926 (2004).
  4. Santiago-Medina, M., Myers, J. P., Gomez, T. M. Imaging adhesion and signaling dynamics in Xenopus laevis growth cones. Dev. Neurobiol. , (2011).
  5. Tanaka, E. M., Kirschner, M. W. Microtubule behavior in the growth cones of living neurons during axon elongation. J. Cell Biol. 115, 345-363 (1991).
  6. Tanaka, E., Kirschner, M. W. The role of microtubules in growth cone turning at substrate boundaries. J. Cell Biol. 128, 127-137 (1995).
  7. Tanaka, E., Ho, T., Kirschner, M. W. The role of microtubule dynamics in growth cone motility and axonal growth. J. Cell Biol. 128, 139-155 (1995).
  8. Gomez, T. M. Working with Xenopus spinal neurons in live cell culture. Methods Cell Biol. 71, 129-156 (2003).
  9. Sive, H. L., Grainger, R. M., Harland, R. M. . Early Development of Xenopus laevis: A Laboratory Manual 2010. , (2010).
  10. Cross, M. K., Powers, M. Obtaining Eggs from Xenopus laevis Females. J. Vis. Exp. (18), e890 (2008).
  11. Mimoto, M. S., Christian, J. L. Manipulation of gene function in Xenopus laevis. Methods Mol. Biol. 770, 55-75 (2011).
  12. Lavery, D. L., Hoppler, S. Gain-of-function and loss-of-function strategies in Xenopus. Methods Mol. Biol. 469, 401-415 (2008).
  13. Nieuwkoop, P. D., Faber, J. . Normal Table of Xenopus Laevis (Daudin). , (1994).
  14. Guirland, C. Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide. J. Neurosci. 23, 2274-2283 (2003).
  15. Spitzer, N. C., Lamborghini, J. E. The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl. Acad. Sci. U.S.A. 73, 1641-1645 (1976).
  16. Turney, S. G., Bridgman, P. C. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat. Neurosci. 8, 717-719 (2005).
  17. Weinl, C. On the turning of Xenopus retinal axons induced by ephrin-A5. Development. 130, 1635-1643 (2003).
  18. Knoll, B. Stripe assay to examine axonal guidance and cell migration. Nat. Protoc. 2, 1216-1224 (2007).
  19. Wheeler, G. N., Hamilton, F. S., Hoppler, S. Inducible gene expression in transgenic Xenopus embryos. Curr. Biol. 10, 849-852 (2000).
check_url/4232?article_type=t

Play Video

Cite This Article
Lowery, L. A., Faris, A. E., Stout, A., Van Vactor, D. Neural Explant Cultures from Xenopus laevis. J. Vis. Exp. (68), e4232, doi:10.3791/4232 (2012).

View Video