Back to chapter

13.7:

温度依存の反応速度

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Temperature Dependence on Reaction Rate

Languages

Share

Chemical reaction rates are sensitive to changes in temperature. A rise in 10 °C can accelerate the reaction rate by 3 to 4 times, but why? A reaction’s rate law defines the relationship between a reactant concentration and the reaction rate. Since the concentration is temperature independent, only the rate constant remains to influence the reaction rate depending on the temperature. Thus, in 1889 the Swedish chemist Svante Arrhenius concluded that a reaction rate’s temperature dependence is encompassed in the rate constant. The rate constant describes the relationship between temperature and kinetic parameters relating to the collision, orientation, and activation energy of reacting molecules via the Arrhenius equation. A is a constant called the Arrhenius factor or frequency factor, e is an exponential factor integrating activation energy measured in joules-per-mole, the gas constant, and the temperature in kelvin. The parameters’ temperature dependence can be explained with the collision model, which states that reacting molecules should collide with sufficient energy in the correct orientation to initiate a chemical reaction. The frequency factor constitutes two components—the collision frequency and the orientation factor. The collision frequency is the number of molecular collisions per unit time, whereas the orientation factor describes the probability of collisions with a favorable orientation. Still, only a small fraction of collisions leads to a reaction. This is because the reacting molecules have to overcome an energy barrier, called the activation energy, to transform into products. Only those molecules colliding with sufficient kinetic energy will have enough potential energy to bend, stretch, or break bonds, to transform into a high-energy intermediate called the transition state, or the activated complex. The short-lived, unstable activated complex loses energy to form stable products, whose total energy is lower than that of the reactants. The exponential factor in the Arrhenius equation represents the fraction of successful collisions resulting in products. An increase in temperature influences both the frequency factor and the exponential factor. At elevated temperatures, molecules move faster, more forcefully, and with higher thermal energies, leading to more favorable collisions. Thus, a temperature increase results in higher frequency and exponential factors leading to a rise in the rate constant, consequently translating to an accelerated reaction rate.

13.7:

温度依存の反応速度

アレニウスの式

アレニウスの式(k = AeEa/ RT)は、あらゆる化学反応の活性化エネルギーと速度定数kを関連付けています。

この式で、Rは理想的な気体定数であり、値は8.314 J / mol· K、Tは絶対温度、Eaは、1モルあたりのジュール単位の活性化エネルギー、eはネイピア数(2.7183…)、Aは衝突の頻度と反応する分子数に関連する頻度因子と呼ばれる定数です。アレニウスの式は、衝突理論の仮定にうまく対応しています。頻度因子Aは、反応条件が反応物分子間の衝突方向に関してどれだけ有利であるかを反映します。反応効率が高い方向での衝突確率が高くなると、Aの値が大きくなり、反応速度が速くなります。

指数項eEa/ RTは、反応速度に対する活性化エネルギーの影響を表します。分子運動論によると、物質の温度は、その構成原子または分子の平均運動エネルギーの尺度です。活性化エネルギーが低いほど、適切にエネルギーが与えられた分子の割合が高くなり、反応が速くなります。

指数項は、反応速度に対する温度の影響も表します。より高い温度は、活性化障壁(Ea)を超えるのに十分なエネルギー(RT)を持っている分子の割合が大きなことを示します。これにより、速度定数の値が高くなり、それに応じて反応速度が速くなります。

Image3

特定の温度で2つの異なる活性化エネルギーを超えるエネルギー、および2つの異なる温度で特定の活性化エネルギーを持つ分子の数を示す分子エネルギー分布。

上記の文章は以下から引用しました。Openstax, Chemistry 2e, Section 12.5: Collision Theory.